
www.manaraa.com

Wilfrid Laurier University
Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2008

Effects of Orthotic Intervention during Running
among Individuals with Functional Flatfoot
E. Anne Cunningham
Wilfrid Laurier University

Follow this and additional works at: http://scholars.wlu.ca/etd

Part of the Exercise Science Commons

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations
(Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

Recommended Citation
Cunningham, E. Anne, "Effects of Orthotic Intervention during Running among Individuals with Functional Flatfoot" (2008). Theses
and Dissertations (Comprehensive). 887.
http://scholars.wlu.ca/etd/887

http://scholars.wlu.ca?utm_source=scholars.wlu.ca%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1091?utm_source=scholars.wlu.ca%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.wlu.ca/etd/887?utm_source=scholars.wlu.ca%2Fetd%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


www.manaraa.com

1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-46128-0 
Our file Notre reference 
ISBN: 978-0-494-46128-0 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



www.manaraa.com



www.manaraa.com

EFFECTS OF ORTHOTIC INTERVENTION DURING RUNNING AMONG 
INDIVIDUALS WITH FUNCTIONAL FLATFOOT 

by 

E. Anne Cunningham 

Honours Bachelor of Science in Kinesiology and Physical Education, 
Wilfrid Laurier University, 2004 

THESIS 

Submitted to Kinesiology and Physical Education, Faculty of Science 

in partial fulfillment of the requirements for 

Master of Science 

Wilfrid Laurier University 

2008© 



www.manaraa.com

ABSTRACT 

Foot orthotics are commonly prescribed to runners with functional flatfoot (FFF) 

with the goal of restoring the medial arch of the foot. In addition, treadmills are typically 

used by both clinicians and researchers in order to measure the lower extremity 

kinematics associated with running. However the mechanism of orthotic intervention as 

well as the accuracy of treadmills in representing overground running remains 

controversial within the literature. 

This thesis first compared the lower extremity kinematics between treadmill and 

overground running among individuals with a subtalar neutral foot type. The results 

indicated no significant differences with respect to rate of rearfoot angle, maximum 

internal tibial rotation angle and rate of internal tibial rotation between the two running 

surfaces. However, maximum rearfoot angle was significantly higher during treadmill 

running. In addition, this thesis compared the lower extremity kinematics during running 

between individuals with subtalar neutral and FFF foot types. The results indicated 

similar lower extremity kinematics during running between groups as no significant 

differences were found between maximum rearfoot angle, rate of rearfoot angle or rate of 

internal tibial rotation. However, the subtalar neutral group demonstrated significantly 

higher maximum internal tibial rotation angles when compared to the FFF group. Finally, 

this thesis investigated the effects of orthotic intervention on the lower extremity 

kinematics during running among individuals with FFF. The results suggest that orthotics 

significantly decrease maximum rearfoot angle and maximum internal tibial rotation 

angle during running among this population. However, rate of rearfoot angle and rate of 

internal tibial rotation were not affected. 

ii 
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These findings suggest that treadmills do accurately represent the lower extremity 

kinematics associated with overground running, however if clinical decisions are 

dependent on small changes in maximum rearfoot angle then careful interpretation should 

be employed when using treadmills. Individuals with FFF did not demonstrate the 

expected increase in lower extremity kinematics therefore further research is required to 

better understand the mechanism of running injury among this population. In addition, 

orthotic intervention may have a mechanical effect on the motion of the lower extremity 

however the extent and applicability of this effect should be further examined. 

i i i 
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Chapter 1: Introduction 

1.1 Abstract 

The popularity of running as a recreational activity has grown immensely over the 

past few decades (McClay, 2000). It has been estimated that there are approximately 40 

million recreational runners in North America (McKenzie, Clement and Taunton, 1985). 

Consequently, running related injuries are commonly seen in rehabilitation clinics. 

Studies indicate that 60-65% of all runners are injured during an average year which is 

defined as a physical problem severe enough to force a reduction in training. In addition, 

runners have been shown to miss approximately 5-10% of their scheduled training due to 

injury whereas racewalkers miss just over 1% (Byrnes, McCullagh, Dickinson and Noble, 

1993). These injuries are associated with every foot type, however, there appears to be a 

higher incidence of running related injuries among individuals who demonstrate 

abnormal running mechanics (Subotnick, 1985; McClay and Manal, 1998). Individuals 

with functional flatfoot (FFF) have been shown to excessively and abnormally pronate 

during the stance phase of running thus, increasing their risk of developing an injury to 

the foot (McClay and Manal, 1998; Lee, Vabore, Thomas, Catanzariti, Kogler, Kravitz, 

Miller and Couture Gassen, 2005). Through the theory of joint coupling, this excessive 

foot motion may also result in excessive torsional motion of the tibia, thereby resulting in 

an increase in knee injuries. However, these results have not been consistent within the 

literature. As a result, there has developed a need to better understand the mechanism of 

running related injuries, particularly among individuals that demonstrate abnormal 

running mechanics as seen in FFF. 

1 
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Currently, orthotic prescription is recommended for individuals with symptomatic 

FFF in order to control the excessive motion of the lower extremity during running. 

There is general agreement in the literature with respect to the clinical effectiveness of 

orthotic intervention among runners. In particular, the use of foot orthotics has been 

positively associated with patient satisfaction (Donatelli, Hurlbert, Conaway and 

St.Pierre, 1988; Moraros and Hodge, 1993) and pain reduction (Gross, Davlin and 

Evanski, 1991; Moraros and Hodge, 1993; Nawoczenski, Cook and Saltzman, 1995; 

Walter, Ng and Stoltz, 2004) thus enabling individuals to return to running (Donatelli, 

Hurlbert, Conaway and St.Pierre, 1988). Currently, researchers are attempting to 

understand the mechanism by which orthotics function in order to produce these 

encouraging symptomatic reductions. It has been speculated that orthotics may realign 

the lower extremity in order to decrease the excessive motion of the rearfoot and tibia 

that is typically seen among individuals with FFF (Mundermann, Nigg, Humble and 

Stefanyshyn, 2003; Nester, van der Linden and Bowker, 2003; MacLean, McClay Davis 

and Hamill, 2006). It seems that for every study that indicates a positive mechanical 

effect of orthotics in reducing excessive motion of the lower extremity (Nawoczenski, 

Cook and Saltzman, 1995; Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, 

Denoth and Stussi, 2000; Mundermann, Nigg, Humble and Stefanyshyn, 2003; Nester, 

van der Linden and Bowker, 2003; MacLean, McClay Davis and Hamill, 2006) there is a 

study reporting that orthotic intervention has no mechanical effect on the lower extremity 

(Nawoczenski, Cook and Saltzman, 1995; Stacoff, Reinschmidt, Nigg, van den Bogert, 

Lundberg, Denoth and Stussi, 2000; Kitaoka, Luo, Kura and An, 2002; Williams III, 

McClay Davis and Baitch, 2003; Stackhouse, McClay Davis and Hamill, 2004). 

2 
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The following sections within this chapter will provide a more in depth analysis 

of the current literature as it pertains to running related injuries (1.2), running mechanics 

of FFF (1.3) and the effectiveness of orthotic intervention (1.4). Section 1.5 will discuss 

the accuracy of kinematic measurements including marker type and location as well as 

running surface. The research goals and hypotheses will be presented in section 1.6 

followed by the references in section 1.7. 

1.2 General introduction to running as a recreational activity 

There has been a large increase in the number of recreational runners over the past 

few decades (McClay, 2000). For example, the Boston Marathon, which began in 1897 

with a total of 18 entrants, now sees over 20,000 participants each year (Boston Athletic 

Association, 2008). As a result, more and more individuals are reaping the health benefits 

that are associated with an increase in cardiovascular fitness as a result of running. In 

addition to the physical health benefits that are associated with running, researchers have 

shown a link between cardiovascular fitness and mental health. This link demonstrates 

that an increase in cardiovascular fitness is associated with lower depressive 

symptomatology (Galper, Trivedi, Barlow, Dunn and Kampert, 2006; Smith, Blumenthal, 

Babyak, Georgiades, Hinderliter and Sherwood, 2007) and a greater emotional well-

being (Galper, Trivedi, Barlow, Dunn and Kampert, 2006). Due to the positive health 

benefits associated with running, as well as the relative affordability of this activity, it is 

not surprising that running has developed into one of the most popular fitness activities. 

3 
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1.2.1 Mechanics of running 

Interest into the underlying mechanics of running was ignited by the exponential 

growth of running as a recreational activity during the 1960's and 1970's (McClay, 

2000). Early researchers in this field divided running into three phases: stance, swing and 

flight phases. This thesis will focus on the stance phase, which occurs when the foot is in 

contact with the ground. The stance phase can be further divided into sub-phases which 

contain the events of heel contact, midstance and toe-off. Figure 1.1 depicts the motion 

of the lower extremity during one complete gait cycle. There are both kinematic and 

kinetic changes that occur at each portion of the stance phase during running. 

Left and right foot 
temporal measures 

o o 

LFS LTO RFS 

rr""' 

RTO LFS 

L. support J j R. support 
H H 1- * - - *H 

t I 

< I 
Ht |H 

I 
I 

L non-support R. non-support 
t i 
i i 
i i 

L. swing 

R. swing R. swing 

Cycle time 

Figure 1.1: Lower extremity temporal measures during running (LFS=left foot strike; LTO=left toe off; 
RFS=right foot strike; RTO=right toe off) (Williams, 2000). 

1.2.1.1 Kinematic changes during the stance phase of running 

Kinematic investigation into the stance phase of running involves understanding 

the motion of the lower extremity as it is in contact with the ground. At heel contact, the 

4 



www.manaraa.com

lateral aspect of the calcaneus typically strikes the ground with the foot in an inverted, 

dorsiflexed position and the knee slightly flexed. The foot then begins to pronate and 

plantarflex at the subtalar joint while the leg begins to internally rotate in order to 

function as a mobile adapter and ultimately absorb shock. In the next phase, midstance, 

the foot moves towards a supinated position in order to lock the subtalar joint. At the 

same time, the knee extends and the leg externally rotates. These movements at the foot 

and knee act to move the body from a mobile adapter to a rigid lever in order to support 

the bodyweight as it passes over the leg and foot and prepares for the final stance phase 

of toe off. At toe off the ankle reaches its maximal plantarflexed position as the heel lifts 

from the ground, the foot is in a supinated position and the knee is flexed in order to 

propel the body forward (Perry, 1992; Whittle, 1999). 

1.2.1.2 Kinetic changes during the stance phase of running 

When examining the kinetics or forces that occur during running, researchers are 

typically interested in the vertical (Fz) and anterior-posterior (Fy) forces that are 

produced when an individual steps onto a force plate (Figure 1.2). In the Fz direction, the 

heel strikes the force plate which results in an initial impact peak. As the foot moves 

towards midstance, the body continues to accelerate downwards and the muscles of the 

lower extremity begin to contract in order to accept and support the body weight. These 

muscles continue to fire when moving into the toe off phase in order to propel the body 

forward. As a result, the vertical force during running contains one passive peak (due to 

the initial impact) and one active peak (due to the contraction of the musculature). The 

anterior-posterior force (Fy) during running contains both braking and propulsive forces. 

At heel contact, force is applied by the foot to the floor in an anterior direction in order to 

5 
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slow the forward momentum of the body. During midstance, the body is directly over the 

foot which results in no anterior-posterior force being applied. As the foot moves towards 

toe off, force is applied by the foot to the floor in a posterior direction in order to propel 

the body forward. 
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Figure 1.2: Vertical (Fz) and anterior-posterior (Fy) forces during the stance phase of running (horizontal 
axis: time (ms); vertical axis: force (N)). 

1.2.2 Theory of lower extremity joint coupling 

As knowledge concerning the mechanics of running progressed, researchers 

began to examine the coordination of motion between joints and segments of the lower 

extremity. Thus, the theory of joint coupling was developed in an attempt to explain the 

movement of the lower extremity during running. This theory implies that movement and 

forces occurring at the foot are transferred to the tibia during running. Figure 1.3 depicts 

the anatomy of the foot which will help in understanding this theory. 

6 
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Figure 1.3: Anatomy of the lower extremity (NIKE, 1989). 

During running, the initial movement of the foot at heel contact is pronation. Foot 

pronation is a complicated, tri-planar movement as it consists of eversion, abduction and 

dorsiflexion of the calcaneus relative to the talus. During the stance phase of running, the 

calcaneus is unable to abduct as it is in contact with the ground. As a result, the talus 

adducts on the calcaneus in order to achieve pronation and attenuate force. The 

movement of the talus causes the tibia to rotate internally due to the tight articulation of 

this joint (DeLeo, Dierks, Ferber and Davis, 2004). Previous research has provided 

evidence for the theory of joint coupling by demonstrating an association between 

calcaneal and tibial movement during each portion of the stance phase while running. 

7 
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More specifically, research has shown that from heel contact to midstance the calcaneus 

everts and the tibia rotates internally and from midstance to toe off the calcaneus inverts 

and the tibia rotates externally (Stacoff, Nigg, Reinschmidt and van den Bogert, 2000; 

Eslami, Begon, Farahpour and Allard, 2007). Further support for the lower extremity 

joint coupling theory has come from the early studies of relative timing. These studies 

suggest that there is a synchrony between peak eversion, peak internal tibial rotation and 

peak knee flexion which occurs near midstance (McClay and Manal, 1997). 

The difficulty in measuring the orientation of the subtalar joint (the articulation 

between the talus and the calcaneus) without using invasive techniques has lead 

researchers to develop the rearfoot eversion to tibial internal rotation (EV/TIR) ratio. This 

ratio provides a measure of the relative motion between eversion and tibial internal 

rotation from heel contact to the respective peaks occurring around midstance which is 

suggestive of the subtalar joint orientation (DeLeo, Dierks, Ferber and Davis, 2004). 

Typically, EV/TIR ratios during running are between 1 and 2 which indicates there is 

greater rearfoot eversion when compared to tibial internal rotation (Stacoff, Nigg, 

Reinschmidt and van den Bogert, 2000; Eslami, Begon, Farahpour and Allard, 2007). For 

example, an EV/TIR ratio of 2 indicates that every 2 deg of eversion will result in 1 deg 

of tibial internal rotation. Thus, the development of the EV/TIR ratio has enabled 

researchers to non-invasively measure the orientation of the subtalar joint, with many 

studies providing further support for the theory of lower extremity joint coupling. 

The controversy surrounding the theory of joint coupling developed once 

researchers attempted to understand how the medial longitudinal arch structure of the foot 

related to the EV/TIR ratio. Many studies have examined this relationship with the results 

8 
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lacking systematic agreement (Nigg, Cole and Nachbauer, 1993; McClay and Manal, 

1997; Williams III, McClay, Hamill and Buchanan, 2001). Nigg et al. (Nigg, Cole and 

Nachbauer, 1993) examined the effects of arch height of the foot on angular motion of 

the lower extremity during running. With respect to eversion movement, they found no 

correlation between this variable and arch height (r2=0.059, p<0.197). A significant 

correlation was found between arch height and maximal internal leg rotation such that 

individuals with high arches demonstrated greater maximal internal leg rotation 

(r2=0.152, p<0.033). However, the 95% confidence limit for the estimation of the 

regression line was essentially horizontal indicating that this influence may be negligible. 

Thus, a lower EV/TIR ratio was seen in the high arch when compared to low arch 

runners. Further, a significant correlation was found between transfer coefficient and arch 

height (r2=0.267, p<0.0034). More specifically, an increase in the transfer of foot 

eversion to internal leg rotation was seen with increasing arch height. Williams et al. 

(Williams III, McClay, Hamill and Buchanan, 2001) also observed a lower EV/TIR ratio 

among high arched runners when compared to low arched runners. Contrary to the results 

of Nigg et al. (Nigg, Cole and Nachbauer, 1993), both groups in this study showed 

similar tibial internal rotation excursions. Therefore, the difference in EV/TIR ratio was a 

result of a significantly higher rearfoot eversion excursion among the low arched runners. 

However, McClay and Manal (McClay and Manal, 1997) found that excessive pronators 

demonstrated a significantly lower EV/TIR ratio when compared to individuals with 

normal rearfoot mechanics. Although this study did not evaluate arch structure, they 

reported that the lower EV/TIR ratio was a result of an increase in tibial internal rotation 

among the pronator group since there were similar rearfoot eversion excursions across 
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both groups. Therefore, it appears that a relationship may exist between arch structure 

and EV/TIR ratios however, the extent of this relationship remains unclear in the 

literature. 

With respect to injury, researchers hypothesized that runners with lower EV/TIR 

ratios (more tibial rotation) would experience an increase in knee injuries and that 

runners with higher EV/TIR ratios (more eversion movement) would experience an 

increase in foot injuries (McClay and Manal, 1997; Williams III, McClay, Hamill and 

Buchanan, 2001). However, Williams et al. (Williams III, McClay, Hamill and 

Buchanan, 2001) discovered that the opposite was occurring. Individuals with low arches 

(higher EV/TIR ratios) and those with high arches (lower EV/TIR ratios) were 

experiencing an increase in knee injuries and foot injuries, respectively. Although Nigg et 

al. (Nigg, Cole and Nachbauer, 1993) found a correlation between the transfer coeffient 

and arch height, only 27% of the variance was explained by arch height. This suggests 

that other factors may be involved in determining the transfer of foot eversion to internal 

tibial rotation in order to explain the mechanism of running-related injuries. 

1.2.3 Running-related injuries 

There is a higher prevalence of injury that occurs during running when compared 

to other activities, particularly walking. Researchers have identified many differences 

between the mechanics of walking and running during the stance phase which may 

explain the difference in injury rates. These differences are outlined below. 

Walking is comprised of three phases: single support, double support and a swing 

phase. The double support phase in walking occurs when both feet are in contact with 

the ground and allows for a greater distribution of force. Running is comprised of two 
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phases: a single support and a flight phase (which occurs when the body is airborne). 

Since there is no double support phase during running, the forces are transferred to the 

foot and lower extremity during the single support phase. The typical stance phase while 

running lasts 0.25s compared to 0.8s while walking with rapid pronation occurring over 

0.015s to 0.030s. Consequently, rapid pronation while running occurs in one-fifth the 

time that would typically be seen while walking (Subotnick, 1985). Therefore, the forces 

are distributed over a smaller area and at a faster rate during running, which may increase 

the amount of force that is transmitted to a specific location on the foot. If a specific 

region of the foot is experiencing an increase in force, this may predispose the runner to 

injury. 

A difference in the amount of force applied to the body has been observed 

between walking and running. The ground reaction force (GRF) that is applied to the 

body during walking is typically equivalent to the individual's body weight. However, 

the GRF that is transferred to the body during running is three to five times the 

individual's bodyweight (Subotnick, 1985). One study found that the resultant GRF's 

increased from walking (peak 0.51 BW and loading rate 24.6 BW/s) to running (1.96 BW 

and 115.2 BW/s) (Perry and Lafortune, 1995). The combination of an increase in GRF 

occurring at a faster rate results in less time to attenuate a greater amount of shock. As 

such, these factors may predispose the body to a higher risk for injury during running 

than walking. 

Kinematic differences have also been noted between walking and running. A 

study conducted by Perry and Lafortune (Perry and Lafortune, 1995) found the maximum 

rearfoot angle was 4.4 deg greater during running than walking. Further, it has been 
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suggested that excessive foot eversion may cause excessive tibial internal rotation by 

means of joint coupling at the ankle (Clement, Taunton, Smart and McNicol, 1981). 

Thus, running injuries may also occur at the knee as well as at the foot. The 'rule of 

three' suggests that biomechanical imbalances in the lower extremity are approximately 

three times more important to the runner than the walker (Subotnick, 1985). For 

example, a 4 deg imbalance of the rearfoot in a walker would be as significant as a 12 

deg imbalance if that walker began running. Therefore, even a slight increase in rearfoot 

eversion may result in injury during running which otherwise may not have developed if 

the individual was only walking. 

Most running injuries occur due to overuse or as a result of microtrauma which 

are the stresses that are absorbed during distance running. For the reasons presented 

above, runners are at a higher risk of developing an injury when compared to walkers. It 

has been proposed that almost perfect biomechanics would be required in order to 

successfully run long distances on artificial surfaces (Subotnick, 1985). Therefore, it is no 

surprise that runners who present with abnormal biomechanics may be at an even higher 

risk of developing injury. 

1.3 Functional flatfoot as a pathological condition 

The condition of flatfoot is characterized by a significant reduction in the medial 

longitudinal arch of the foot. A flatfoot is typically categorized as either functional or 

rigid. The term functional flatfoot (FFF) refers to the high degree of flexibility within the 

foot during physical examination when compared to a rigid flatfoot. Therefore, a FFF 

differs from a typical flatfoot in that the reduction of the arch is seen while weight 
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bearing. For example, an arch exists under the medial aspect of the foot while sitting 

(Figure 1.4) but disappears completely or is significantly reduced with weight bearing 

(Figure 1.5) (Kim and Weinstein, 2000). The focus of this thesis will be on individuals 

with FFF. 

Figure 1.4: FFF while non-weight bearing Figure 1.5: FFF while weight bearing 

The development of a medial longitudinal arch is a natural process of childhood 

growth. It has been suggested that 90% of infants and toddlers up to the age of two years 

have varying degrees of flatfeet due to the presence of an infant fat pad along the medial 

aspect of the foot and the normal joint hypermobility typically seen during this age group 

(Staheli, Chew and Corbett, 1987). However, most children with flatfeet do not present 

with any degree of discomfort or disability (Kim and Weinstein, 2000). The medial 

longitudinal arch is thought to develop between three and five years of age in most 
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children with only 4% of children demonstrating flatfeet by the age of 10 (Staheli, Chew 

and Corbett, 1987). 

Adult FFF is generally thought to be a progression of the condition from 

childhood as it is also characterized by partial or complete loss of the medial longitudinal 

arch while weight bearing (Lee, Vabore, Thomas, Catanzariti, Kogler, Kravitz, Miller 

and Couture Gassen, 2005). FFF deformity is frequently encountered within the adult 

population and may present with clinical consequences ranging from mild limitations to 

severe disability and pain (Lee, Vabore, Thomas, Catanzariti, Kogler, Kravitz, Miller and 

Couture Gassen, 2005). Although the exact cause of FFF is unknown, it is thought that 

family history, activity level, obesity, footwear and occupation may be some contributing 

factors (Lee, Vabore, Thomas, Catanzariti, Kogler, Kravitz, Miller and Couture Gassen, 

2005). 

1.3.1 Anatomy of the lower extremity in functional flatfoot 

The reduction in the medial longitudinal arch has been thought to result in 

abnormal and excessive pronation of the foot. Figure 1.6 illustrates the structures and 

joints that are involved with pronation. During pronation, the talus adducts and 

plantarflexes on the calcaneus, which simultaneously everts and plantarflexes (Donatelli, 

1997). The movement of the talus causes the tibia to rotate internally due to the tight 

articulation of the talocrural joint. 
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Figure 1.6: Anterior view of the closed kinetic chain pronation. The calcaneus (B) everts and the talus (A) 
adducts and plantarflexes (Donatelli, 1997). 

Pronation of the foot can also been seen when looking at the posterior aspect of 

the tibiocalcaneal alignment. Figure 1.7 demonstrates the rearfoot tibiocalcaneal 

alignment that is seen among individuals with different foot types. A neutral foot type 

results in a neutral calcaneal position when compared to the tibia. While a supinated and 

pronated foot result in calcaneal inversion and eversion, respectively, when compared to 

the tibia. 
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Figure 1.7: Tibiocalcaneal angles for 3 different foot types. A supinated and pronated foot type results in 
calcaneal inversion and eversion respectively when compared to the tibia (Nike, 1989). 

1.3.2 Mechanics of running among the functional flatfoot population 

Researchers are beginning to examine the differences between foot types with 

respect to running mechanics. More specifically, studies have demonstrated that lower 

extremity mechanics during running differ among the FFF and 'normal' populations 

(McClay and Manal, 1997; McClay and Manal, 1998; Hunt and Smith, 2004). McClay 

and Manal (McClay and Manal, 1997) produced one of the first studies which compared 

the coupling parameters in runners with normal (NL) and excessive (PR) pronation. The 

results indicate higher peak rearfoot eversion and tibial internal rotation excursions (tibia 

relative to the calcaneus) among the PR group. In addition, the PR group demonstrated a 

significantly lower EV/TIR ratio. Surprisingly, both groups demonstrated similar 

eversion excursions however the PR group demonstrated significantly higher tibial 

internal rotation excursions which resulted in the lower EV/TIR ratio. 
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In another study, McClay and Manal (McClay and Manal, 1998) examined the 

lower extremity kinematics between excessive pronators (PR) and normal pronators (NL) 

during running. The results showed significant kinematic differences between these two 

populations. They found that the foot was more everted at heel contact and toe off within 

the PR group when compared to the NL group (HC: PR=-8.5 deg, NL=1.7 deg; TO: PR=-

4.8 deg, NL=1.7 deg). Further, the magnitude of rearfoot eversion among the PR group 

(-21.2 deg) was almost twice that of the NL group (-11.2 deg). The mean peak velocity of 

foot eversion was significantly greater among the PR group. However, no significant 

differences were found with respect to knee internal rotation of the tibia relative to the 

femur or knee internal rotation excursions between the PR and NL groups. 

Although it is generally believed that different running mechanics occur between 

excessive and normal pronators, there has been some evidence to suggest that this may 

not be the case. Research conducted by Hunt and Smith (Hunt and Smith, 2004) 

examined the mechanics of the symptomatic flatfoot verses the normal foot during 

walking. They hypothesized that there would be an increase in rearfoot (frontal plane) 

and forefoot (sagittal plane) motion among the flatfoot group. In contrast to previous 

studies they reported no significant differences between frontal plane rearfoot motion 

(flatfoot, 9 deg; normal foot, 8 deg) and sagittal plane forefoot motion (flatfoot, 10 deg; 

normal foot, 12 deg) between these two groups. Despite finding some small significant 

differences between the groups with respect to foot motion they concluded that there was 

more of a restraint of motion while walking among symptomatic flatfoot individuals 

when compared to a normal foot. Thus, further research may be required to better 
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understand the mechanics that are occurring among the symptomatic FFF population 

during both walking and running. 

The effects of arch height on lower extremity kinematics have also been 

investigated during running (Nigg, Cole and Nachbauer, 1993; Williams III, McClay, 

Hamill and Buchanan, 2001; Williams III, McClay Davis, Scholz, Hamill and Buchanan, 

2004). As previously discussed in section 1.2, Nigg et al. (Nigg, Cole and Nachbauer, 

1993) found no significant influence of arch height on either maximal eversion 

movement or maximal internal leg rotation during the stance phase of running. However, 

the transfer of foot eversion to internal leg rotation was significantly increased with an 

increased arch height, indicating that a functional relationship may exist between arch 

height and injury. Since arch height only accounted for 27% of this coupling, the authors 

concluded that there must be other contributing factors which should be further 

investigated. 

Conversely, Williams III et al. (Williams III, McClay, Hamill and Buchanan, 

2001) examined the effects of arch height on the lower extremity kinematics during 

running and found significant differences between high and low arched individuals. Low 

arched individuals demonstrated an increased rearfoot eversion excursion and rearfoot 

eversion velocity when compared to high-arched individuals. In addition, the increase in 

eversion excursion resulted in an increase in the EV/TIR ratio among low arched 

individuals. 

A difference in the methodology of determining arch height exists within the 

literature. Nigg et al. (Nigg, Cole and Nachbauer, 1993) determined arch height as being 

the highest point along the medial plantar curvature while in a full weight bearing 
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position with the foot resting lightly on a raised platform. Arch height was measured 

using a digital caliper. Other researchers (Williams III, McClay, Hamill and Buchanan, 

2001; Williams III, McClay Davis, Scholz, Hamill and Buchanan, 2004) have determined 

the arch height ratio as the height of the medial arch from the floor at 50% of the foot 

length divided by the truncated foot length (TFL). TFL is defined as the distance from the 

posterior aspect of the calcaneus to the medial joint space of the first metatarsal 

phalangeal joint. 

Arch height ratio = arch height / truncated foot length 

These differences in arch height measurements may reflect the varying results seen 

between these studies. In order to accurately compare the effects of arch height on 

running mechanics, a standardized method for measuring arch height should be 

determined. 

Lower extremity electromyography and kinetics have also been evaluated 

between low and high arched individuals. It has been suggested that low arched 

individuals have a decrease in leg stiffness (Williams III, McClay Davis, Scholz, Hamill 

and Buchanan, 2004), knee stiffness (Williams III, McClay Davis, Scholz, Hamill and 

Buchanan, 2004) and vertical loading rates (Williams III, McClay, Hamill and Buchanan, 

2001; Williams III, McClay Davis, Scholz, Hamill and Buchanan, 2004) when compared 

to high arched individuals. These factors may further contribute to the risk of running 

related injuries among FFF individuals. 
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1.3.3 Running-related injuries among the functional flatfoot 

population 

The different lower extremity mechanics among FFF individuals may be 

associated with an increased risk of developing a running related injury (Subotnick, 1985; 

McClay and Manal, 1997; McClay and Manal, 1998; Kaufman, Brodine, Shaffer, 

Johnson and Cullison, 1999; McClay, 2000). Previous literature suggests that a FFF 

excessively pronates for a longer period of time (Lee, Vabore, Thomas, Catanzariti, 

Kogler, Kravitz, Miller and Couture Gassen, 2005) or even throughout the entire stance 

period (McClay and Manal, 1998) without ever moving towards a supinated position. The 

normal function of pronation is to unlock the subtalar joint in order to better attenuate the 

forces that are applied to the body during heel contact to midstance. Then typically, from 

midstance to toe off, the foot supinates in order to lock the subtalar joint, causing the foot 

to become a stable rigid lever. With the foot as a rigid lever, it is better able to support the 

weight of the body as it passes over the leg and foot during normal gait. In addition, a 

rigid lever allows for optimal and successful completion of toe off. The fact that a FFF 

may be pronated for the entirety of stance inhibits the foot from supinating during 

midstance and toe off. Therefore, the pronated foot is supporting the weight of the body 

during the entirety of stance while the subtalar joint is in a very unstable position, thereby 

increasing the risk of injury. 

Previous research has shown a link between excessive or prolonged pronation and 

injury during running (Nike, 1989; McClay and Manal, 1998). McClay and Manal 

(McClay and Manal, 1998) reported that the incidence of running-related injuries was 

significantly higher among excessive pronators (67%) when compared to normal 
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pronators (22%). Typical overuse running injuries were reported including patellar 

tendonitis, shin splints, Achilles tendonitis, knee ligament damage and ankle sprains. 

Other common injury sites among individuals with symptomatic FFF include pain at the 

arch, heel and lateral border of the foot which increases with weight bearing activities 

such as running (Lee, Vabore, Thomas, Catanzariti, Kogler, Kravitz, Miller and Couture 

Gassen, 2005). 

Knee injuries are reportedly the most common injury site among runners 

(Clement, Taunton, Smart and McNicol, 1981). As previously described, excessive 

pronation may result in an increase in internal tibial rotation during stance due to the tight 

articulation at the talocrural joint. Previous research has demonstrated an increase in 

tibial internal rotation excursion among excessive pronators which may place this group 

at an increased risk of developing knee injuries during running (McClay and Manal, 

1997). Controversy regarding the relationship between excessive pronation and tibial 

stress fractures exists within the literature. Kaufman et al. (Kaufman, Brodine, Shaffer, 

Johnson and Cullison, 1999) demonstrated an increase in tibial stress fractures among 

excessive pronators whereas, Hetsroni et al. (Hetsroni, Finestone, Milgrom, Ben-Sira, 

Nyska, Mann, Almosnino and Ayalon, 2008) found the opposite was true. 

A difference in the EV/TIR ratio may place runners at risk for different types of 

injury (Nigg, Cole and Nachbauer, 1993; McClay and Manal, 1997; Williams III, 

McClay, Hamill and Buchanan, 2001). It is generally thought that an increase in the 

EV/TIR ratio (increase in rearfoot eversion excursion) will result in foot and ankle 

injuries whereas a decrease in the EV/TIR ratio (increase in tibial internal rotation) will 

result in knee injuries. However, there has been limited research conducted to determine 
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the relationship between EV/TIR ratio and injury. Williams III et al. (Williams III, 

McClay, Hamill and Buchanan, 2001) examined this relationship and surprisingly found 

that low arched runners with a higher EV/TIR ratio (more rearfoot eversion excursion) 

actually had an increase in knee injuries, while high arched runners (low EV/TIR ratio) 

experienced more foot and ankle injuries. Therefore, the EV/TIR ratio may be clinically 

relevant however currently it does not provide a logical sequence and thus, more research 

needs to be conducted in order to verify these findings. Although there is some 

discrepancy, the majority of the literature suggests that individuals with FFF are at an 

increased risk of developing a running related injury due to the excessive rate and angle 

of pronation. 

1.4 Effectiveness of foot orthotics 

In order to control the excessive motion that has been documented among runners 

with FFF, foot orthotics are commonly prescribed. From a mechanical perspective, the 

assumption is that foot orthotics may optimize the skeletal alignment of these individuals 

bringing the movement Of the lower extremity to resemble a more normal pattern during 

running. As a result, foot orthotics have been shown to be effective in treating problems 

associated with the foot, ankle and skeletal alignment (Landorf and Keenan, 2000). 

Previous research on the effectiveness of orthotics has typically been categorized into two 

key areas: the clinical effectiveness of orthotics including symptom relief and the 

mechanical function of the lower extremity while wearing orthotics. 
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1.4.1 Clinical effectiveness 

There is reasonably consistent agreement in the literature regarding patient 

satisfaction and symptom relief associated with wearing foot orthotics. Further, it has 

been documented that runners are able to return to their sport if orthotics have been worn 

following injury. 

A retrospective survey of 81 patients conducted by Donatelli et al. (Donatelli, 

Hurlbert, Conaway and St.Pierre, 1988) found that 91% of surveyed patients were 

satisfied with their orthotics. Further, at the time of the survey, 94% of patients were still 

wearing their orthotics and 52% stated that they would not leave home without them. 

Moraros and Hodge (Moraros and Hodge, 1993) completed a nationwide survey on 

patient satisfaction with prescription foot orthotics. Individuals were evaluated during 14 

weeks in order to make any modifications to their foot orthotics. Of the 403 respondents 

at the end of the 14 weeks, 83.1% of patients indicated that they were satisfied with their 

orthotics. Further, 70.5% stated that the final fit of the custom orthotic was excellent; 

with 29.3%, 1.7% and 1.0% reporting that it was good, fair and poor, respectively. 

Foot orthoses have been successfully used to treat various lower extremity 

symptoms including, but not limited to, knee pain, plantar fasciitis, shinsplints, iliotibial 

band tendonitis (Nawoczenski, Cook and Saltzman, 1995) and mild to moderate 

osteoarthritis at the medial knee (Rubin and Menz, 2005). The results of the nationwide 

survey by Moraros and Hodge (Moraros and Hodge, 1993) on the effectiveness of 

orthotics to resolve the primary complaint indicate that at the final visit (14th week), 

62.5% had their chief complaint completely resolved; 32.8% partially resolved; and 4.7% 

unresolved. Walter et al. (Walter, Ng and Stoltz, 2004) completed a survey regarding 
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symptomatic relief among patients who wore prescribed functional foot orthotics for a 

minimum of one year. Of the 266 respondents, 75% reported pain relief (ranging from 

60%-100%) after wearing orthotics. However, 9% of patients stated that the orthotics did 

not help at all in reducing pain. In another survey of 500 long-distance runners who had 

been prescribed orthotic shoe inserts, 76% reported a complete or great improvement of 

their symptoms (Gross, Davlin and Evanski, 1991). Orthotic shoe inserts were most 

effective among individuals suffering from biomechanical abnormalities including 

excessive pronation. Further, 90% of the participants in this study continued to wear their 

orthotics even after their symptoms had disappeared. 

In addition, studies have been conducted to compare the effectiveness of different 

types of foot orthotics in reducing pain. Rome et al. (Rome, Gray, Stewart, Hannant, 

Callaghan and Hubble, 2004) compared the clinical effectiveness of two types of foot 

orthotics commonly used to treat plantar heel pain. The orthotics used in this study were 

accommodative (used to provide cushioning, padding and shock absorption during gait) 

and functional (used to achieve weight bearing realignment of the lower extremity and to 

redistribute the load during gait). Participants were evaluated at baseline, after 4 weeks 

and after 8 weeks using The Foot Health Status Questionnaire (FHSQ) which determines 

foot health spanning 4 domains: foot pain, foot function, footwear and general foot 

health. The results showed a significant decrease in foot pain and a significant increase in 

foot function from baseline to 4 to 8 weeks with the functional orthotic as determined by 

the FHSQ. The accommodative orthotic demonstrated a significant decrease in foot pain 

from baseline to 4 weeks only, indicating that these orthotics reached their maximum 

24 



www.manaraa.com

potential to reduce pain at 4 weeks. The authors concluded that although the functional 

foot orthoses were initially more expensive, they resulted in a better quality of life. 

In a study conducted by Donatelli et al. (Donatelli, Hurlbert, Conaway and 

St.Pierre, 1988), 70% of individuals who had sustained a running related injury were able 

to return to their sport with the use of a functional foot orthotic. Researchers are in 

relative agreement as to the effectiveness of orthotics in reducing pain associated with 

running related injuries. However, the mechanisms by which orthotics function to 

produce symptomatic relief remains inconclusive within the literature. 

1.4.2 Mechanical function of the lower extremity 

Although there has been considerable reported subjective relief while wearing 

orthotics, the scientific data related to understanding the mechanism through which 

orthotics function remains controversial in the literature. As previously noted, individuals 

with FFF are thought to have an increase in rearfoot eversion and subsequent internal 

tibial rotation, by means of joint coupling, while running. It has been speculated that 

orthotics may function by realigning the lower extremity in order to decrease the 

excessive motion of the rearfoot and tibia that is typically seem among these individuals. 

Many studies have demonstrated a reduction in maximum rearfoot eversion 

during running while wearing a foot orthotic. MacLean et al. (MacLean, McClay Davis 

and Hamill, 2006) investigated the effects of custom foot orthotics on the lower extremity 

of 15 female runners. Participants completed 5 overground running trials, with and 

without a foot orthotic, while in a running shoe that had the heel counter removed. The 

results indicated a significant reduction in maximum rearfoot eversion and maximum 

rearfoot eversion velocity while wearing the custom foot orthotic. In a similar study, 

25 



www.manaraa.com

Mundermann et al. (Mundermann, Nigg, Humble and Stefanyshyn, 2003) examined the 

effects of posting and custom-molding of foot orthotics on lower extremity kinematics 

during running. Twenty one pronators were recruited for this study and wore running 

sandals during testing. The insoles of the running sandals were removed and replaced in 

order to complete the orthotic condition trials. The results indicated that medial posting 

within foot orthotics significantly decreased maximum foot eversion and maximum foot 

eversion velocity while running. Nester et al. (Nester, van der Linden and Bowker, 2003) 

investigated the effects of medially and laterally wedged foot orthotics on the kinematics 

of normal walking gait. They found that a 10 deg wedge within the medial aspect of the 

foot orthotic significantly reduced foot pronation. Earlier studies have examined the 

effects of orthotics on maximum foot eversion during running and have found similar 

results (Rodgers and Leveau, 1982; Smith, Clarke, Hamill and Santopietro, 1986). 

Although a lot of convincing evidence exists for the use of orthotics in reducing 

maximum foot eversion, there also appears to be an equal amount of evidence that 

challenges this notion. In a cadaveric study, Kitaoka et al. (Kitaoka, Luo, Kura and An, 

2002) assessed the effects of foot orthoses on arch height and rearfoot alignment. They 

found that arch height, compared with that of the flat foot condition, increased 

significantly but to a limited degree (<2%) while using a foot orthotic. However, the 

rearfoot alignment, as determined by the calcaneal-tibial position, did not improve with 

foot orthotics. Stackhouse et al. (Stackhouse, McClay Davis and Hamill, 2004) compared 

the effects of custom orthotics on forefoot and rearfoot strike running patterns. Although 

there were no significant findings for peak eversion, eversion velocity or eversion 

excursion with either foot strike, there were some subjects who demonstrated a decrease 
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in these variables with orthotic use. This finding indicates that orthotic intervention may 

be highly individualized. Stacoff et al. (Stacoff, Reinschmidt, Nigg, van den Bogert, 

Lundberg, Denoth and Stussi, 2000) examined the effects of medial foot orthoses on 

skeletal movements of the calcaneus and tibia during running. Their methodology 

differed slightly in that they inserted intracortical Hofman pins with reflective marker 

triads into the calcaneus and tibia in order to track the movement of those segments. The 

results of 5 participants indicated that medial orthotics reduced maximum eversion 

(except for one subject) however, this reduction was not significant. Similar findings 

have been found in other studies indicating that orthotic intervention may not have a 

significant effect on maximum foot eversion while running (Nawoczenski, Cook and 

Saltzman, 1995; Williams III, McClay Davis and Baitch, 2003). 

More recently, studies have begun to investigate the association between 

symptomatic relief from orthotics and kinematic variables. Zammit and Payne (Zammit 

and Payne, 2007) conducted a study to examine the effects of foot orthoses on rearfoot 

motion and how these changes correlated with the degree of symptom relief. The results 

of 22 excessive pronators indicated that orthotics had a small but statistically significant 

effect on rearfoot motion. Using The Foot Health Status Questionnaire, pain and 

functioning levels were recorded at baseline and then again 4 weeks later. Interestingly, 

at the 4 week follow-up appointment they did not find a correlation between differences 

in rearfoot motion and positive clinical outcomes. Therefore, they concluded that the 

rearfoot motion changes were not accounting for the extent of symptom reduction seen in 

this study and that other mechanisms of orthotic function should be examined. 
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In terms of internal tibial rotation, again there is literature that both supports and 

refutes the effects of orthotic intervention on this kinematic variable. Bellchamber and 

van den Bogert (Bellchamber and van den Bogert, 2000) examined the cause and effect 

relationship between internal tibial rotation and pronation of the foot during heel to toe 

running. The goal of this study was to determine if orthotic intervention would be 

effective at reducing knee pain that was attributed to excessive internal tibial rotation. 

The results demonstrated periods during the stance phase of running where axial tibial 

rotation was driven by the foot. Thus, they proposed that orthotics would be effective at 

limiting axial tibial rotation during these time periods. As such, there have been a number 

of studies that have demonstrated a reduction in internal tibial rotation while using a foot 

orthotic. 

Stacoff et al. (Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and 

Stussi, 2000) investigated the effects of medial foot orthotics on skeletal movements of 

the calcaneus and tibia during the stance phase of running. A significant decrease in total 

internal tibial rotation was found as a result of the medial orthotic. Nawoczenski et al. 

(Nawoczenski, Cook and Saltzman, 1995) evaluated the effects of custom rigid orthotics 

among both low-arched and high-arched individuals. The use of orthotics produced a 

small but significant decrease in total range of tibial rotation relative to the rearfoot. 

However, it is interesting to note that both groups experienced a similar reduction in the 

tibial rotation range. A study conducted by Mundermann et al. (Mundermann, Nigg, 

Humble and Stefanyshyn, 2003) looked at the effects of posting, molding, and combined 

posting and molding within foot orthotics on the effects of lower extremity kinematics 

during running. Posting was found to significantly reduce maximum tibial rotation and 
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maximum tibial rotation velocity. However, tibial rotation was affected to a lesser extent 

when compared to foot eversion movement. Both molding, and posting and molding were 

found to significantly reduce maximum tibial rotation. 

Conversely, published research has shown that orthotic intervention has no effect 

on internal tibial rotation while running. Nigg et al. (Nigg, Khan, Fisher and Stefanyshyn, 

1998) examined the effects of shoe inserts on total internal tibial rotation during running. 

Five shoe inserts had a bilayer design which was constructed using two different 

materials at the top and the bottom of the insert. These inserts were then tested against 

each other and also against a no shoe insert condition. The results indicate that the total 

internal tibial movement was slightly less during the insert conditions when compared to 

the no insert condition, however, these findings were not statistically significant. 

There is a large amount of research to both support and challenge the mechanical 

effectiveness of foot orthotics during running. The current literature remains inconclusive 

as to whether orthotics effectively align the lower extremity during running in order to 

decrease excessive motion at the rearfoot and tibia. Much of the controversy in the 

literature can be attributed to differences in participants, orthotic construction, foot type, 

running speed and kinematic marker type and placement. 

1.5 Accuracy of kinematic measurements 

There are a number of factors to consider when attempting to measure lower 

extremity kinematic variables. The type and location of markers as well as footwear and 

running surface may all influence the outcome of the study. When comparing the results 

of previous studies surrounding running mechanics and orthotic intervention it is 
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important to consider these differences in methodology as a possible explanation for the 

contradicting results currently seen within the literature. 

1.5.1 Kinematic tracking markers 

When measuring kinematic variables typically two types of markers are used: 

bone pins or skin markers. Bone pins are directly inserted into the bone to track 

movement. This option is fairly invasive as it requires a small surgery. As well, a large 

surgical triad projecting from the leg may affect the subject's typical gait mechanics. 

Another option would be to use skin markers which are placed directly on the skin in 

order to track the underlying bone movements. Proper location of skin markers is 

essential in order to obtain accurate kinematic measurements during gait. The closer the 

markers are to the bone the more accurate their measurements will be. Reinschmidt et al. 

(Reinschmidt, van den Bogert, Lundberg, Nigg, Murphy, Stacoff and Stano, 1997) 

investigated the errors at the tibiofemoral and tibiocalcaneal joints associated with skin 

movement artifact (skin markers). The results suggest that knee rotations may be affected 

with substantial errors when using skin markers however tibiocalcaneal movements are 

generally well reflected when using skin markers. 

Skin markers were chosen for this research project and appropriate care was taken 

to place the external skin markers at locations with minimal adipose tissue and muscle 

between the bone and the skin to limit motion artifact. As such, bony landmarks 

including condyles and malleoli were used to track the movement of the lower extremity. 
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1.5.2 Use of footwear 

Another factor to consider when measuring lower extremity kinematic variables is 

whether the participants will perform running trials while wearing shoes. Many studies 

have investigated the movement of the foot within the shoe during running and have 

found that footwear may influence the normal movement of the foot. Stacoff et al. 

(Stacoff, Reinschmidt and Stussi, 1992) measured the movement of the heel counter as 

well as the movement of the heel inside the shoe. They determined that the heel inside the 

shoe moves less and at a slower rate than the heel counter. Nigg (Nigg, 1986) 

demonstrated that a difference of 2-3 deg for the rearfoot markers can be observed 

between the heel counter and the heel. As a result, they propose that if footwear is to be 

worn then windows in the heel counter should be cut so that markers can be directly 

placed on the heel. However, cutting the heel counter may affect the structural integrity 

of the footwear which may negatively impact the results. 

Studies involving torsion of the foot have been conducted to measure the effects 

of footwear of gait. Stacoff et al. (Stacoff, Kaelin, Stuessi and Segesser, 1989) examined 

the relationship between torsion and pronation in running during both rearfoot and 

forefoot strike patterns. The results indicated that compared to running barefoot, torsion 

of the foot was significantly restricted during running while wearing a shoe. This 

restriction in torsion resulted in a significant increase in foot pronation while wearing a 

shoe during both rearfoot and forefoot strike patterns. In another study involving torsion 

of the foot during running, Stacoff et al. (Stacoff, Kalin and Stussi, 1991) demonstrated 

that running shoes resulted in the greatest reduction of torsion angle which produced the 

31 



www.manaraa.com

largest increase in pronation angle, compared to running while wearing spikes or while 

barefoot. 

Due to the possible confounding results with the use of footwear, the studies 

presented in this thesis were conducted barefoot in order to better control for the variables 

of interest. 

1.5.3 Running surface 

Most studies measuring gait mechanics perform running trials on either a 

treadmill or on an overground runway. The type of running surface that is used in the 

study may affect the results. Particularly the extent to which treadmills accurately 

represent overground locomotion remains controversial in the literature. Studies have 

shown that there are advantages and disadvantages associated with using this type of 

instrument to measure gait. Advantages of using treadmills in research include easy 

control of environmental variables such as velocity and incline, small testing area is 

needed and multiple gait trials can be recorded in less time when compared to overground 

runway trials. However, there are some disadvantages associated with using treadmills to 

measure gait. Disadvantages include difficulty measuring forces, the moving treadmill 

belt may interfere with natural gait mechanics and a familiarization period to treadmill 

running may exist in order for inexperienced treadmill runners to feel comfortable on the 

treadmill and to run as they typically would overground. In order to make comparisons 

between treadmill and overground studies the assumption is made that treadmills do not 

alter typical gait mechanics. Several studies have been conducted in order to test the 

accuracy of treadmill measurements. The results have been controversial with some 

studies supporting and other studies challenging the above assumption. 
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Schache et al. (Schache, Blanch, Rath, Wrigley, Starr and Bennell, 2001) 

measured the time-distance parameters and three-dimensional angular kinematics of the 

lumbo-pelvic-hip complex during treadmill and overground running. Significant 

differences were found for all of the time-distance parameters and lumbar extension and 

anterior pelvic tilt at initial contact and the first maximum anterior pelvic tilt. However, 

these significant results were not systematic across all subjects. Therefore Schache et al. 

(Schache, Blanch, Rath, Wrigley, Starr and Bennell, 2001) conclude that high powered 

treadmills with minimal belt speed fluctuations are capable of obtaining three-

dimensional kinematic patterns of the lumbo-pelvic-hip complex during running. Van 

Ingen Schenau (Ingen Schenau, 1980) demonstrated through theoretical mathematical 

calculations that the use of a fixed coordinate system may lead to faulty conclusions 

regarding the description of treadmill locomotion. He suggested that as long as the belt 

speed is held constant a moving coordinate system should be used when analyzing 

treadmill data. He concluded that when this approach is used no mechanical differences 

were found between treadmill and overground locomotion. A study conducted by 

Frishberg (Frishberg, 1983) compared kinematic and temporal differences between 

overground and treadmill sprinting. Despite using a moving coordinate system as 

suggested by Van Ingen Schenau (Ingen Schenau, 1980), Frishberg (Frishberg, 1983) 

found significant kinematic differences between treadmill and overground running. 

Specifically, most of the kinematic differences occurred in or just before the support 

phase and concerned the supporting leg. With respect to the temporal components he 

reported no significant differences between the two modes of running, although each 

individual displayed definite trends. As well, Frishberg (Frishberg, 1983) found that 
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oxygen debt was 36% higher in overground sprinting trials when compared to treadmill 

trials. Other studies have looked at treadmill familiarization as a necessary requirement in 

order to obtain similar measurements between treadmill and overground locomotion. 

Matsas et al. (Matsas, Taylor and McBurney, 2000) investigated knee kinematic 

differences and temporal and distance gait measurements between treadmill and 

overground walking. The results showed no significant differences in knee kinematics or 

temporal and distance gait measurements after running on a treadmill for 4 and 6 minutes 

respectively. A study by Lavcanska et al. (Lavcanska, Taylor and Schache, 2005) looked 

at the amount of time necessary for treadmill familiarization to occur among subjects 

with no prior treadmill experience. This study found significant differences at the pelvis, 

hip, knee and ankle during the first 6 minutes of treadmill running, after which no 

significant differences were found. The results from these studies suggest that a treadmill 

familiarization period of 6 minutes is required in order to obtain similar measurements 

from treadmill and overground locomotion trials. 

Many studies have found evidence that suggests there are in fact differences 

between treadmill and overground locomotion. Differences have been found with respect 

to kinematics, electromyography (EMG), temporal variables and kinetics. Nelson et al. 

(Nelson, Dillman, Lagasse and Bickett, 1972) conducted one of the first studies which 

explored the biomechanics of experienced runners during treadmill and overground trials. 

They found kinematic differences between these two modes of running. Specifically, 

treadmill running was associated with longer periods of support, lower vertical velocity 

and less variable vertical and horizontal velocities. Nigg et al. (Nigg, De Boer and Fisher, 

1995) investigated leg kinematics and found that individuals land with flatter feet during 
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treadmill running when compared to overground running. They also found inconsistent 

patterns in lower extremity kinematics depending on landing style, running speed, and 

shoe and treadmill situations. In 1998, Wank et al. (Wank, Frick and Schmidtbleicher, 

1998) found differences in the kinematics and muscle activities between overground and 

treadmill running. In this study treadmill trials were found to increase step frequency and 

to decrease step length, shoe sole angle at impact and knee joint angle at impact and 

stance phase. Differences with EMG were also seen among the treadmill trials. 

Specifically, a decrease in vastus lateralis activity during ground contact and an increase 

in biceps femoris activity during stance phase and the first part of the swing phase as well 

as an increase in rectus femoris activity during hip flexion. Alton et al. (Alton, Baldey, 

Caplan and Morrissey, 1998) found differences in leg joint kinematics and temporal 

variables with treadmill and overground walking. Significant increases were seen during 

treadmill walking in cadence, hip range of motion and maximum hip flexion joint angle 

whereas a significant decrease was seen in stance time. Kinetic differences have been 

found between treadmill and overground locomotion. White et al. (White, Yack, Tucker 

and Lin, 1998) looked at vertical ground reaction forces during treadmill and overground 

walking at slow, normal and fast speeds. They found significant force magnitude 

differences during normal and fast walking trials with an increase in vertical force (5-9%) 

during midstance and a decrease in peak vertical force during late stance with treadmill 

walking. Milgrom et al. (Milgrom, Finestone, Segev, Olin, Arndt and Ekenman, 2003) 

designed a study to determine if the kinetics of treadmill and overground running are 

reflected in differences in tibial strains and strain rates. This study found that axial 

compression and tension strains and strains rates were 48-285% higher among 
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overground runners and suggested that treadmill runners were at a lower risk of 

developing tibial stress fractures. 

It is apparent that the current literature regarding the accuracy of treadmills in 

measuring overground locomotion remains quite controversial. Many studies have shown 

that treadmills do not alter typical overground gait mechanics when examining angular 

kinematics and temporal and mechanical variables. Conversely, other studies suggest that 

treadmills do in fact alter typical overground locomotion particularly with respect to 

vertical force, electromyography, range of motion, lower extremity kinematics, time to 

treadmill familiarization and oxygen debt. To our understanding, there has been little 

research done to test the accuracy of treadmills in representing overground running with 

respect to maximum rearfoot motion and maximum internal tibial rotation. 

Many factors may explain the controversial results seen in the literature. First, the 

above studies did not control for foot type. As a result the recruited sample may have 

consisted of participants with neutral, flat and high arched feet. The kinematics associated 

with each foot type may be remarkably different and therefore it is understandable why 

the overall kinematic results of treadmill and overground locomotion remain 

inconclusive. Second, footwear was worn by the participants in all of the previous studies 

with one exception. In some studies the participants wore their own shoes while in other 

studies the shoes were supplied, ensuring that all footwear worn was similar. However, if 

all foot types were not similar, it may have been the shoes that were altering typical gait 

and not the treadmill. Even if proper footwear was matched to the participant's foot type 

studies have shown that footwear may change the normal movement of the foot within 

the shoe during gait. Having the participants perform the trials barefoot may control for 
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the effects of footwear on normal gait mechanics. Therefore further research is required, 

that controls for foot type and footwear, in order to confirm the use of treadmills in 

accurately representing overground running, particularly with respect to maximum 

rearfoot motion and maximum internal tibial rotation variables. 

1.6 Research goals and hypotheses 

The main research goals examined in this thesis: 

1. To determine if kinematic differences exist between treadmill and overground 

running with respect to maximum rearfoot motion and maximum internal tibial 

rotation. 

2. To determine if individuals with FFF demonstrate an increase in maximum 

rearfoot motion and maximum internal tibial rotation during treadmill running 

when compared to individuals with a subtalar neutral foot type. 

3. To determine the mechanical effects of support under the medial longitudinal arch 

of the foot on maximum rearfoot motion and maximum internal tibial rotation 

during treadmill running among individuals with FFF. 

The main hypotheses of this thesis: 

1. No significant differences exist between treadmill and overground running with 

respect to maximum rearfoot motion and maximum internal tibial rotation. 

2. Individuals with FFF demonstrate an increase in maximum rearfoot motion and 

maximum internal tibial rotation during treadmill running when compared to 

individuals with subtalar neutral foot type. 
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3. Arch supports under the medial longitudinal arch of the foot significantly reduce 

maximum rearfoot motion and maximum internal tibial rotation during treadmill 

running among individuals with FFF. 

Chapters 2 and 3 will further investigate these research goals in an attempt to 

better understand 1) the applicability of the results from treadmill studies and 2) the 

running mechanics associated with FFF and the mechanism by which foot orthotics 

provide symptomatic relief. Chapter 4 will discuss the results of these studies and 

their clinical implications. 
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CHAPTER 2: KINEMATIC DIFFERENCES BETWEEN 
TREADMILL AND OVERGROUND RUNNING 

2.1 Abstract 

The treadmill is a common instrument used to measure the lower extremity 

kinematics during running as repetitive gait cycles can be collected while controlling for 

velocity and incline. Previous studies involving gait research have been conducted with 

participants running on a treadmill or across an overground runway. In order to compare 

the results across previous studies, the assumption is made that similar gait mechanics 

occur during both treadmill and overground running. However this assumption remains 

controversial within the literature (Nelson, Dillman, Lagasse and Bickett, 1972; Ingen 

Schenau, 1980; Nigg, De Boer and Fisher, 1995; Wank, Frick and Schmidtbleicher, 

1998; Schache, Blanch, Rath, Wrigley, Starr and Bennell, 2001; Lavcanska, Taylor and 

Schache, 2005). The purpose of this study was to compare the lower extremity 

kinematics between treadmill and overground running while controlling for foot type and 

footwear. A total of 19 healthy subjects with a subtalar neutral foot type performed a total 

of 12 barefoot running trials. Randomized running trials were completed on 2 different 

running surfaces (overground and treadmill) at 2 different speeds (2.0m/s and 3.0m/s). 

Measures of maximum rearfoot motion and maximum internal tibial rotation were 

calculated to determine if treadmill running mimics overground running. Running surface 

did not significantly affect rate of rearfoot angle (p=0.1133), maximum internal tibial 

rotation angle (p=0.0517) or rate of internal tibial rotation (p=0.0549). However, 

maximum rearfoot angle was significantly increased during treadmill running (9.7 ± 

3.3deg) when compared to overground running (8.8 ± 2.9deg) (p=0.045) although this 
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difference was less than 1 degree. The results indicate that treadmills can confidently be 

used to measure lower extremity kinematics during overground running. However, 

careful interpretation should be employed when examining the magnitude of the 

maximum rearfoot angle obtained within treadmill studies. 

2.2 Introduction 

Interest in the underlying mechanics of running was ignited by the exponential 

growth of running as a recreational activity during the 1960's and 1970's (McClay, 

2000). As the number of running related injuries increased, researchers began to 

investigate the mechanics of running in order to better understand the mechanisms 

associated with injury. As research studies emerged it became apparent that different 

methodologies were being utilized. More specifically, in some studies running trials were 

completed along an overground runway whereas in other studies the running trials were 

completed on a treadmill. Due to the many advantages associated with using a treadmill it 

is not surprising that many studies chose this method. Within a laboratory, treadmills 

require less space and allow for the collection of more gait cycles when compared to 

overground runways. In addition, treadmills allow for better control over incline, velocity 

and acceleration when compared to overground runways. However, in order to make 

comparisons between treadmill and overground studies, the assumption is made that 

treadmills do not alter typical running mechanics. Additionally, this assumption is of 

clinical importance since many health professionals use treadmills when diagnosing 

abnormal running mechanics. 

Several studies have been conducted in order to test the accuracy of treadmills in 

representing overground running. The results have been controversial with some studies 
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supporting and other studies challenging the above assumption. No significant 

differences have been found between treadmills and overground runways with respect to 

pelvis, hip, knee and ankle kinematics during running (Lavcanska, Taylor and Schache, 

2005) or knee kinematics and temporal-distance gait measurements during walking 

(Matsas, Taylor and McBurney, 2000) assuming adequate time for treadmill 

familiarization, and three-dimensional kinematic patterns of the lumbo-pelvic-hip 

complex during running (Schache, Blanch, Rath, Wrigley, Starr and Bennell, 2001). 

Further, the use of a moving coordinate system to analyze data has been shown to result 

in no mechanical differences between overground and treadmill running (Ingen Schenau, 

1980) assuming the treadmill belt speed is held constant. In contrast, other studies have 

shown kinematic differences between treadmill and overground runways. Treadmill 

running has been associated with longer periods of support and lower vertical velocity 

(Nelson, Dillman, Lagasse and Bickett, 1972), an increase in step frequency and a 

decrease in step length, shoe sole angle and knee joint angle at impact (Wank, Frick and 

Schmidtbleicher, 1998) and a flatter foot during stance (Nigg, De Boer and Fisher, 1995) 

when compared to overground running. 

Many factors may explain the controversial results seen within the literature 

including footwear and foot type. Of the reviewed articles, all but one study involved 

running trials while wearing footwear. Variations within types of footwear included the 

standard lab shoe (Milgrom, Finestone, Segev, Olin, Arndt and Ekenman, 2003), the 

participants own personal shoe (Frishberg, 1983; Wank, Frick and Schmidtbleicher, 

1998; Schache, Blanch, Rath, Wrigley, Starr and Bennell 2001), both standard and 

personal shoes (Nigg, De Boer and Fisher, 1995) or the type of footwear was not 
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specified (Nelson, Dillman, Lagasse and Bickett, 1972; Matsas, Taylor and McBumey, 

2000; Lavcanska, Taylor and Schache, 2005). Since the use of footwear has been shown 

to inaccurately represent the kinematic measurement of the foot (Nigg, 1986; Stacoff, 

Reinschmidt and Stussi, 1992) and the normal movement of the foot itself (Stacoff, 

Kaelin, Stuessi and Segesser, 1989; Stacoff, Kalin and Stussi, 1991), the kinematic 

results obtained from these studies may not be accurate. In addition, the previously 

mentioned studies did not control for foot type and thus, study populations may have 

included individuals with neutral, high and low arched feet. The kinematics associated 

with each foot type may have been remarkably different, and when compiled together, 

may explain the inconclusive results seen within the literature. According to our 

understanding, there has been no research to date that compares rearfoot and internal 

tibial rotation angles and rates between treadmill and overground running while 

controlling for footwear and foot type. 

2.2.1 Specific aims 

The purpose of this study was to investigate the lower extremity kinematics 

associated with treadmill and overground barefoot running among individuals with a 

subtalar neutral foot type. Researchers and clinicians typically examine the movement of 

the rearfoot to predict the movement of the underlying subtalar joint in order to diagnose 

abnormal running mechanics. If similar rearfoot and tibial rotation angles and rates are 

observed between these two running surfaces, then it can be postulated that treadmills 

accurately represent overground running. However, if lower extremity kinematic 

differences exist between these two running surfaces, then clinicians and researchers may 
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need to cautiously interpret their results when attempting to predict overground running 

mechanics from treadmill running observations. 

2.2.2 Hypotheses 

H0: No significant differences exist between treadmill and overground barefoot running 

with respect to rearfoot and internal tibial rotation angles and rates among individuals 

with a subtalar neutral foot type. 

HA: Treadmill barefoot running will differ significantly from overground barefoot 

running with respect to rearfoot and internal tibial rotation angles and rates among 

individuals with a subtalar neutral foot type. 

2.3 Method 

2.3.1 Participants 

A total of 19 healthy individuals (mean ± standard deviation: age, 21.8 ± 3.2 

years; height, 172.1 ± 9.8 cm; weight, 70.5 ± 13.7 kg; 10 women, 9 men) participated in 

this study. This study was reviewed and approved by the University Research Ethics 

Board at Wilfrid Laurier University. Study participants, recruited from the university 

population, were informed of the requirements and signed consent forms prior to testing. 

Individuals were deemed eligible to participate in this study if they met our 

predetermined subtalar neutral foot criteria. 

Subtalar neutral foot type was defined as normal active range of motion (ROM) of 

the lower extremity, typical pelvic and knee alignment during static and dynamic visual 

inspections, a rearfoot angle between 4 and 6 deg and the presence of a medial 
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longitudinal arch while sitting and standing (Appendix 2.1). Rearfoot angle was 

determined using a goniometer to measure the angle that resulted from the intersection of 

two lines: one line connected the mid calf and the Achilles tendon and the second line 

connected the superior and inferior aspects of the calcaneus (Figure 2.1). All participants 

had a rearfoot angle while standing that correlated with a neutral foot type (range 3-6 

deg), with the group mean ± standard deviation being 4.5 ± 0.95 deg. In addition, 

participants completed a screening questionnaire (Appendix 2.2) and were excluded from 

this study if they had any neurological or physical condition that affected the use of their 

lower extremities. 

Based on our criteria, all subjects demonstrated a subtalar neutral foot type. Only 

one subject demonstrated genu varum (bow-legged spanning 5 finger width) which was 

classified as atypical knee alignment. Running observations indicated that 16 participants 

initially struck the ground with their heel while the remaining subjects were mid/forefoot 

strikers. 

Figure 2.1: Rearfoot angle as determined by the difference between the angle of the leg and the angle of 
the calcaneus (RF angle = 9ieg - ©calcaneus)-
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2.3.2 Experiment set-up and data collection 

The laboratory used for data collection measured 10m X 8m and was set up for 

overground and treadmill running trials as illustrated in Figures 2.2 and 2.3, respectively. 

The overground runway was approximately 14m in length and was positioned diagonally 

across the laboratory floor to allow for maximal running distance while ensuring foot 

strike with the force plate. 

m* 
FP1 

FP2 

FP3 

Gun era Bank 

Figure 2.2: Laboratory set-up for overground running trials. 
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Figure 2.3: Laboratory set-up for treadmill running trials. 

Kinematic data was collected at 100Hz using 2 OptoTrak 3020 camera banks 

(Northern Digital Inc., Waterloo, Canada) and the ToolBench computer software. A total 

of 20 infrared light-emitting diodes (IRED's) were placed on each rearfoot (4) and tibia 

(6) in order to track the motion of these segments (Figure 2.4). 
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14- Left Achilles Tendon 

15-Left Calcaneus 

16-LeftLower Heel 

17-Right Mid Calf 

18 - Right Achilles Tendon 

19-Right Calcaneus 

20-RightLower Heel 

Left Right 

Posterior View 

Tibial Rotation 

ti Vjf it 

it in 

Right 

I* If 

Left 

Anterior View 

% Marker 

1 - Left Lateral Condyle 

2 - Below Left Lateral Condyle 

3 - Left Anterior Medial Tibia 1 

4 - Left Anterior Medial Tibia 2 

5-LeftLateral Malleolus 

6 - Below Left Lateral Malleolus 

7 - Right Medial Condyle 

8 - Below Right Medial Condyle 

9 - Right Anterior Medial Tibia 1 

10 - Right Anterior Medial Tibia 2 

11 - Right Medial Malleolous 

12 - Below Right Medial Malleolus 

Figure 2.4: IRED placement on the rearfoot and tibia in order to track rearfoot angle and internal tibial 
rotation during running. 

The treadmill (Figure 2.5) used to complete the treadmill running trials was a 

Precor M9.21si (Precor Inc., Bothell, WA USA). The dimensions of the running surface 

was 129.5cm X 43cm with the overall length, width (including handrails), and height of 

the treadmill measuring 170cm, 71cm and 111 .8cm respectively. It contained a 2.0 hp 

motor. 
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Figure 2.5: Treadmill used in this study (M9.21si, Precor Inc., Bothell, WA USA). 

2.3.3 Procedure 

This study consisted of two sessions. During Session 1 the subtalar neutral foot 

criteria and the exclusion questionnaire were completed. If the participants were deemed 

eligible based on the criteria and the questionnaire they were invited back to complete 

Session 2. 

During Session 2 the kinematic markers were applied to the rearfoot and tibia of 

each leg on the participant as illustrated in Figure 2.4. They were then given as many 

overground and treadmill practice trials as required in order to feel comfortable running 

at 2.0m/s and 3.0m/s. A spotter stood beside them throughout all running trials to ensure 

their safety. Once participants felt comfortable to begin they completed the barefoot 

running trials under 4 conditions: overground 2.0m/s; overground 3.0m/s; treadmill 

2.0m/s; treadmill 3.0m/s. A total of 10 participants completed the overground 2.0m/s trial 
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first and continued through the conditions as described above. The remaining 9 

participants started with the treadmill 3.0m/s trial and moved in reverse order thus 

finishing with the overground 2.0m/s trial. To ensure accurate running velocity during the 

overground trials, a 3m distance was marked out on the floor. Using a stopwatch, a lab 

assistant recorded the amount of time it took the participant to move across the 3m 

distance. For example, a time of 1.5s indicated a speed of 2.0m/s whereas a time of 1.0s 

indicated a speed of 3.0m/s. In addition, successful completion of the overground trials 

included striking the force plate with the left foot while running. This allowed for 

consistent determination of heel contact among all subjects. A total of 3 successful 

overground running trials at each speed were completed for each participant. 

Before beginning the treadmill running trials, the treadmill was positioned with 

the front, left corner resting on the force plate. Again, the vertical force information 

allowed for the determination of heel contact with the force from the left foot having a 

higher magnitude than the right foot. Once the participant felt ready to begin, the 

treadmill speed was brought up to either 2.0m/s or 3.0m/s. A total of three 5 second trials 

were collected before the treadmill speed was returned to a comfortable walking pace as 

set by the participant. On the participants command, the treadmill speed was again 

increased to record three consecutive trials at the remaining speed. Once these trials were 

collected the speed was decreased to a comfortable walking pace until the participant 

indicated that they had completed sufficient cool down time and were ready to step off. 

Following completion of all barefoot running trials, the treadmill was removed from the 

runway and the participant stood quietly on the force plate in the direction of the runway 
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while a 5 second static trial was recorded. Thus, Session 2 involved the completion of 13 

trials (12 running and 1 static). 

2.3.4 Data analysis and statistics 

The four conditions in this protocol allowed for the analysis of whether lower 

extremity kinematics differed between overground and treadmill running at 2 different 

speeds (Figure 2.6). The independent variables in this study were surface (overground or 

treadmill), velocity (2.0m/s or 3.0m/s) and foot (right or left). The dependent kinematic 

variables analyzed in this study were rearfoot motion (used to measure foot pronation) 

and internal tibial rotation. Please refer to Table 2.1 for a description of each kinematic 

variable analyzed in this study. A priori analysis of estimation of sample size was 

conducted prior to subject recruitment in order to ensure that a statistical power of 0.8 

was achieved. 

Treadmill 

Overground 

2.0m/s 

i ' 

3.0m/s 

i f 

Main effect of treadmill and 
overground running at 3.0m/s 

Main effect of treadmill and 
overground running at 2.0m/s 

Figure 2.6: Repeated measures analysis of variance between treadmill and overground running. 

Rearfoot angle is commonly used to estimate foot pronation due to the difficulty 

in measuring this variable. In this study, rearfoot angle was calculated using the four 

rearfoot kinematic markers (Figure 2.4). The top two markers allowed for the 

determination of the absolute leg angle relative to the horizontal; the bottom two markers 

58 



www.manaraa.com

were used to determine the absolute calcaneal angle relative to the horizontal. The 

relative angle of the rearfoot was determined by subtracting the absolute angle of the leg 

from the absolute angle of the calcaneus: 

Rearfoot angle = 8ieg - 6Caicaneus 

The second dependent variable, internal tibial rotation, was tracked by six 

kinematic markers that were placed on the tibia (Figure 2.4). Computer software (Visual 

3D) was used to create a model of the right and left tibia for each subject. This model was 

created from a standing trial and then assigned to the running trials. Thus, this study 

analyzed internal tibial rotation relative to the static position of the tibia. Internal tibial 

rotation was calculated within the Visual 3D software and was defined as rotation around 

the vertical (z) axis in the transverse plane. Both rearfoot angle and internal tibial rotation 

were calculated for every frame within each 5 second trial. 

Table 2.1: A description of the kinematic variables analyzed in this study. All angles and rates were 
calculated for every frame during each 5 second trial. 

Kinematic Variable 

Maximum Rearfoot Angle 

Rate of Rearfoot Angle 

Description 

Rearfoot angle (RFe) was determined by 
calculating the difference between the leg 
and calcaneal angles. Maximum rearfoot 
angle (Max RFe) was defined as the 
maximum rearfoot angle achieved during 
the stance phase minus the rearfoot angle at 
heel contact: 

M a x RFe = RFe max stance - RFe heel contact 

Rate of rearfoot angle (RFrate) was defined 
as the rate at which the rearfoot achieved 
the maximum rearfoot angle during stance. 
It was calculated by dividing the Max RFe 
by the difference in time from heel contact 
to maximal stance: 

RFrat.= MaxRFe 
tRF9 max stance — tRF6 heel contact I 
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Maximum Internal Tibial Rotation 
Angle 

Rate of Internal Tibial Rotation 

Internal tibial rotation angle (ITRe) was 
defined as rotation around the vertical (z) 
axis in the transverse plane and was 
calculated using Visual 3D software. 
Maximum ITRe was defined as the 
difference between ITRe at heel contact and 
maximal stance: 

M a x ITRe = ITRe max stance - ITRe heel contact 

Rate of internal tibial rotation (ITRrate) was 
defined as the rate at which the tibia 
achieved the maximum internal rotation 
angle during stance. It was calculated by 
dividing the Max ITRe by the difference in 
time from heel contact to maximal stance : 

ITRrafP= MaxITRfl 
tlTR0 max stance ~ tlTR9 heel contact 

A program was written in Visual Basic specifically for the analyses in this study. 

This program allowed for the selection of OptoTrak, force plate and Visual 3D data and 

then displayed them in a graph. This graph showed the position of the right (marker 20) 

or left (marker 16) foot as well as the vertical force. The vertical force data was collected 

during this study in order to more accurately determine when heel contact and toe off had 

occurred. After selecting an area of the graph that correlated with an increase in vertical 

force, rearfoot and internal tibial rotation curves were produced. From these curves, 

maximum angles and rates of both the rearfoot and tibia were determined. During each 

trial, one stance phase was selected and analyzed for both the right and left foot. 

The results were analyzed using the SAS computerized statistical package. A 

three factor (2 conditions X 2 speeds X 2 feet) within-subject repeated measures ANOVA 

was used to analyze the results with the a priori alpha set at 0.05. All rearfoot and tibial 

rotation outliers with a standard residual greater than 2.0 were investigated. A total of 11 
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outliers had missing data during stance ranging from 10 frames to the entire stance phase 

and therefore were excluded from the analysis. 
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2.4 Results 

The purpose of this study was to determine if treadmills accurately represent 

overground running with respect to rearfoot motion and internal tibial rotation. This 

section describes the results found for each dependent variable: 1) maximum rearfoot 

angle, 2) rate of rearfoot angle, 3) maximum internal tibial rotation angle, and 4) rate of 

internal tibial rotation. The result of each variable begins with a description of how 

running surface, running speed and foot affected that particular variable as well as any 

interactions that occurred. The figures illustrate the effects of running surface and 

running speed on the dependent variable of interest. Following these figures are graphs 

which illustrate the interactions for each variable if they were found to be significant. The 

tables at the end of this section summarize the effects of running surface (Table 2.2), 

running speed (Table 2.3) and foot (Table 2.4) on each of the dependent variables. 

2.4.1 Maximum rearfoot angle 

The type of running surface had a significant effect on maximum rearfoot angle 

(p=0.045). More specifically, the maximum rearfoot angle was significantly less while 

running overground (8.8 ± 2.9 deg) when compared to running on a treadmill (9.7 ± 3.3 

deg) (Table 2.2). Running speed also had a significant effect on maximum rearfoot angle 

(p=0.048) as running at 2.0m/s and 3.0m/s was associated with maximum rearfoot angles 

of 8.8 ± 3.0 deg and 9.7 ± 3.2 deg, respectively (Table 2.3). A significant difference with 

respect to maximum rearfoot angle was also observed between feet (p<0.0001). For 

example, the left foot had a smaller maximum rearfoot angle when compared to the right 

foot (8.1 ± 2.3 deg versus 10.4 ± 3.4 deg, respectively) (Table 2.4). Figure 2.7 illustrates 

the effects of running surface and running speed on maximum rearfoot angle. 
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No significant interactions occurred with the maximum rearfoot angle variable. 
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Figure 2.7: Maximum rearfoot angle (mean + standard deviation) obtained while running overground and 
on a treadmill at 2 different speeds. The symbol' W ' denotes significance. 
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2.4.2 Rate of rearfoot angle 

The type of running surface did not have a significant effect on the rate of rearfoot 

angle (p=0.1133) as overground and treadmill running demonstrated values of 92.2 ± 

49.9 deg/sec and 100.9 ± 46.8 deg/sec, respectively (Table 2.2). Rate of rearfoot angle 

was significantly affected by running speed (p=0.0001). Specifically, running at 2.0m/s 

and 3.0m/s was associated with values of 83.9 ± 43.6 deg/sec and 109.7 ± 49.8 deg/sec, 

respectively (Table 2.3). No significant differences in the rate of rearfoot angle were 

present between left (101.8 ± 54.3 deg/sec) and right (91.3 ± 40.8 deg/sec) feet 

(p=0.2087) (Table 2.4). Figure 2.8 illustrates the effects of running surface and running 

speed on the rate of rearfoot angle. 

There was a significant interaction between running speed and foot (p=0.0037). 

More specifically, the rate of rearfoot angle was significantly less within the right foot 

(96.4 ± 39.4 deg/sec) when compared to the left foot (123.1 ± 55.4 deg/sec) while 

running at 3.0m/s only (Figure 2.9). 
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Figure 2.8: Rate of rearfoot angle (mean + standard deviation) obtained while running overground and on a 
treadmill at 2 different speeds. 
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Interaction between running speed and foot (p=0.0037) 

140 

TT 120 
o 
CO 

t 
s © 
O) 

c (0 
*-" o o 
t 
« © 
<*-
o 
0 
** 

100 

80 

60 

40 

20 

-2.0m/s 

-3.0m/s 

Left 
Foot 

Right 

Figure 2.9: The interaction between running speed and foot (p=0.0037) on the rate of rearfoot angle. Mean 
values presented; standard deviations are presented on page 65. 
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2.4.3 Maximum internal tibial rotation angle 

Maximum internal tibial rotation angle was not significantly affected by running 

surface (p=0.0517) as overground and treadmill running produced maximum internal 

tibial rotation angles of 12.2 ± 10.1 deg and 13.5 ± 8.4 deg, respectively (Table 2.2). 

Running speed did not significantly affect maximum internal tibial rotation angles 

(p=0.1174) as 2.0m/s and 3.0m/s demonstrated values of 13.6 ± 9.7 deg and 12.2 ± 8.6 

deg, respectively (Table 2.3). Maximum internal tibial rotation angle was not 

significantly affected by foot (p=0.7314) as the left and right foot produced maximum 

internal tibial rotation angles of 13.6 ± 12 deg and 12.2 ± 4.5 deg, respectively (Table 

2.4). Figure 2.10 illustrates the effects of running surface and running speed on maximum 

internal tibial rotation angle. 

There was a significant interaction between running surface and foot (p=0.0339). 

More specifically, maximum internal tibial rotation angle was significantly less within 

the right foot (12.6 ±4.1 deg) when compared to the left foot (14.4 ± 11.3 deg) during 

treadmill running only (Figure 2.11). 
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Figure 2.10: Maximum internal tibial rotation angle (mean + standard deviation) obtained while running 
overground and on a treadmill at 2 different speeds. 
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Figure 2.11: The interaction between running surface and foot (p=0.0339) on maximum internal tibial 
rotation angle (deg). Mean values presented; standard deviations are presented on page 68. 
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2.4.4 Rate of internal tibial rotation 

Rate of internal tibial rotation was not significantly affected by running surface 

(p=0.0549) as overground and treadmill running produced values of 94.7 ± 77.3 deg/sec 

and 104.6 ± 69 deg/sec, respectively (Table 2.2). Running speed did not significantly 

affect the rate of internal tibial rotation (p=0.5044) as 2.0m/s and 3.0m/s demonstrated 

values of 96.5 ± 70.9 deg/sec and 104 ± 75.2 deg/sec, respectively (Table 2.3). Rate of 

internal tibial rotation was not significantly affected by foot (p=0.9259) as the left and 

right foot produced values of 102.0 ± 83.8 deg/sec and 98.0 ± 59.3 deg/sec, respectively 

(Table 2.4). Figure 2.12 illustrates the effects of running surface and running speed on the 

rate of internal tibial rotation. 

There was a significant interaction between running speed and running surface 

(p=0.0090). More specifically, the rate of internal tibial rotation was significantly 

increased during treadmill running between speeds of 2.0m/s (97.4 ±71 deg/sec) and 

3.0m/s (112.5 ± 66.3 deg/sec) (Figure 2.13). A significant interaction was also 

demonstrated between running speed and foot (p=0.0183). More specifically, there was a 

significant decrease in the rate of internal tibial rotation with the right foot (93.7 ± 54.8 

deg/sec) when compared to the left foot (99 ± 82.7 deg/sec) while running at 2.0m/s 

(Figure 2.14). 
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Figure 2.12: Rate of internal tibial rotation (mean + standard deviation) obtained while running overground 
and on a treadmill at 2 different speeds. 
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Figure 2.13: The interaction between running speed and running surface (p=0.0090) on the rate of internal 
tibial rotation (deg/sec). Mean values presented; standard deviations are presented on page 71. 
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Figure 2.14: The interaction between running speed and foot (p=0.0183) on the rate of internal tibial 
rotation (deg/sec). Mean values presented; standard deviations are presented on page 71. 
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Table 2.2: The effects of surface type (overground and treadmill) on the dependent variables. Values 
represented as mean (standard deviation). 
* denotes significance (p<0.05) between surface type. 

Max Rearfoot Angle (deg) * 

Rate of Rearfoot Angle (deg/sec) 

Max Internal Tibial Rotation Angle (deg) 

Rate of Internal Tibial Rotation (deg/sec) 

Overground 

8.8 (2.9) 

92.2 (49.9) 

12.2(10.1) 

94.7 (77.3) 

Treadmill 

9.7 (3.3) 

100.9(46.8) 

13.5(8.4) 

104.6(69) 
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Table 2.3: The effects of running speed (2.0m/s and 3.0m/s) on the dependent variables. Values 
represented as mean (standard deviation). 
* denotes significance (p<0.05) between running speed. 

Max Rearfoot Angle (cleg) * 

Rate of Rearfoot Angle (deg/sec) * 

Max Internal Tibial Rotation Angle (deg) 

Rate of Internal Tibial Rotation (deg/sec) 

2.0m/s 

8.8 (3.0) 

83.9 (43.6) 

13.6(9.7) 

96.5 (70.9) 

3.0m/s 

9.7 (3.2) 

109.7(49.8) 

12.2(8.6) 

104(75.2) 



www.manaraa.com

Table 2.4: The foot effect (left and right) on the dependent variables. Values represented as mean (standard 
deviation). 
* denotes significance (p<0.05) between foot. 

Max Rearfoot Angle (deg) * 

Rate of Rearfoot Angle (deg/sec) 

Max Internal Tibial Rotation Angle (deg) 

Rate of Internal Tibial Rotation (deg/sec) 

Left Foot 

8.1 (2.3) 

101.8(54.3) 

13.6(12) 

102(83.8) 

Right Foot 

10.4(3.4) 

91.3(40.8) 

12.2(4.5) 

98 (59.3) 
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2.5 Discussion 

The objective of this research study was to investigate the accuracy of treadmills 

in representing overground running. We hypothesized that there would be no significant 

difference between treadmill and overground running with respect to lower extremity 

kinematic variables. The results of this study support this hypothesis in terms of the rate 

of rearfoot angle, maximum internal tibial rotation angle and the rate of internal tibial 

rotation. However, maximum rearfoot angle was significantly greater during treadmill 

running when compared to overground running, albeit less than 1 degree. This section 

begins with a discussion of the observed results with respect to rearfoot motion and 

internal tibial rotation. Then, the clinical applications and study limitations are presented 

followed by recommendations for future research and overall conclusions. 

2.5.1 Rearfoot motion 

The kinematic marker set-up and procedures used to measure rearfoot motion in 

this study has been used in previous research (Nike, 1989; Kernozek and Ricard, 1990; 

Perry and Lafortune, 1995; McClay and Manal, 1997; McClay and Manal, 1998; 

Hetsroni, Finestone, Milgrom, Ben-Sira, Nyska, Mann, Almosnino and Ayalon, 2008). 

The results of this study indicate that treadmills may slightly over predict maximum 

rearfoot angles when compared to overground running (overground, 8.8 ± 2.9 deg; 

treadmill, 9.7 ± 3.3 deg). Similar maximum rearfoot angles (range: 8.23-11.2 deg) have 

been reported in previous work involving treadmill and overground running (McClay and 

Manal, 1997; McClay and Manal, 1998; Nigg, Khan, Fisher and Stefanyshyn, 1998; 

Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000). From 

these studies, running trials performed on a treadmill elicited maximum rearfoot angles 
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closer to the high end of the range (11.2 deg) whereas running trials performed 

overground elicited maximum rearfoot angles closer to the low end of the range (8.23 deg 

and 10.5 deg). In a particular study involving overground running trials at 2.5-3.0m/s, the 

maximum rearfoot angle of 8.23 deg was demonstrated which is very similar to the 

findings of the present study (Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, 

Denoth and Stussi, 2000). Although significance was achieved with maximum rearfoot 

angle between overground and treadmill running, it is unknown whether this small 

difference (<1 deg) would be of clinical significance. 

The current literature suggests that the type and size of the treadmill may have 

implications on the kinematic effects of locomotion. A study which compared different 

types of treadmills to overground sprinting kinematics indicated that torque treadmills 

may more accurately represent overground sprinting when compared to conventional 

motorized treadmills (McKenna and Riches, 2007). In addition, a narrow treadmill 

(34.5cm) with a hard surface has been shown to elicit more foot pronation during the 

initial portion of the stance phase while walking when compared to a wider treadmill 

(50.5cm) with a soft surface (Sajko and Pierrynowski, 2005). Although treadmill softness 

is not known, the width of the treadmill used in the current study was 43cm and thus, 

running surface width may partly be responsible for the increase in maximum rearfoot 

angle. Therefore, the significant result of maximum rearfoot angle may be associated 

with the size and type of the treadmill used in this study and may not be reflective of all 

treadmill running in general. 

In terms of the rate of rearfoot angle, the results from this study indicate that 

treadmill running did not differ significantly from overground running (overground, 92.2 
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± 49.9 deg/sec; treadmill, 100.9 ± 46.8 deg/sec). This finding may be of greater 

importance in terms of injury prevention since increases in maximum rearfoot eversion 

velocity have been associated with overuse running injuries (Hreljac, Marshall and 

Hume, 2000). Previous work on rearfoot motion during running has reported values for 

the rates of rearfoot angle that are consistent with the values measured in this study. 

Specifically, while running at a similar speed (2.5-3.Om/sec) maximum rearfoot velocity 

ranged from 73.17 deg/sec to 157.41 deg/sec between subjects (Stacoff, Reinschmidt, 

Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000). At a slightly faster running 

speed (3.6m/sec) maximum rearfoot velocities ranging from approximately 55 deg/sec to 

190 deg/sec were noted between subjects (MacLean, McClay Davis and Hamill, 2006). 

2.5.2 Internal tibial rotation 

The kinematic markers were placed at locations on the tibia that had minimal soft 

tissue between the bone and the skin and could be seen by the camera during the running 

trials. These concepts for optimal marker placement on the shank have been supported by 

previous work (Nigg, Khan, Fisher and Stefanyshyn, 1998; Bellchamber and van den 

Bogert, 2000). The method used to calculate internal tibial rotation in this study has been 

used in previous research (Perry, 1993). The results from this study indicate that 

treadmills accurately represent internal tibial rotation angle during overground running as 

no significant differences were found between these running surfaces (overground, 12.2 ± 

10.1 deg; treadmill 13.5 ± 8.4 deg). Similar values have been reported within the 

literature. A study investigating the transverse rotation of the tibia during walking found 

values ranging from 3.5 - 14.4 deg (Lafortune, 1984). Nigg et al. (Nigg, Cole and 

Nachbauer, 1993) reported internal tibial rotation values of approximately 21 ± 8.4 deg 
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during the stance phase of running. It has been speculated that approximately 6.9 deg of 

the total 21 deg may be a result of external tibial rotation during heel contact (Perry, 

1993). Therefore, a more accurate value for their measured internal tibial rotation may be 

closer to 14 deg which is similar to the present study. Other research studies have 

measured internal tibial rotation relative to the foot (Nigg, Cole and Nachbauer, 1993; 

McClay and Manal, 1997; Nigg, Khan, Fisher and Stefanyshyn, 1998). The results from 

these studies demonstrate internal tibial rotation angles ranging between approximately 

4.8 deg to 8.9 deg. These values, which are lower than those found in the present study, 

may be explained by their choice of reference frame. Since the foot and tibia move 

together during gait, internal tibial rotation relative to the foot may be less than if it was 

measured relative to a static structure. The present study measured internal tibial rotation 

relative to its static position which may explain the increased internal tibial rotation 

angles found in the present study. 

The rate of internal tibial rotation did not differ significantly between treadmill 

and overground running (overground, 94.7 ± 77.3 deg/sec; treadmill, 104.6 ± 69.0 

deg/sec). Thus, treadmills accurately represent the rate of internal tibial rotation during 

overground running. Although few studies have examined this variable, the findings from 

the present study appear to be lower than what has been previously shown. In a study 

involving overground running at 4.0m/s, a maximum tibial rotation velocity of 

approximately 185 deg/sec was demonstrated (Mundermann, Nigg, Humble and 

Stefanyshyn, 2003). This increase in velocity may be explained by the increase in 

running speed or due to the fact that the reported velocity may have included that of both 

internal and external tibial rotation. 
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This study demonstrated no significant differences between treadmill and 

overground running with respect to internal tibial rotation which is particularly 

interesting since running injuries have been shown to most commonly occur at the knee 

(Clement, Taunton, Smart and McNicol, 1981). Therefore, it can be postulated that 

treadmill running may not further increase the risk of developing running related knee 

injuries. 

2.5.3 Clinical applications 

The results from this study indicate that treadmills can be used to accurately 

represent the lower extremity kinematics associated with overground running. This 

instrument allows for the collection of repetitive gait cycles while controlling for velocity 

and incline when compared to overground runways and as a result may better contribute 

to our understanding of normal and abnormal running mechanics as well as optimal 

footwear design. It is currently unknown whether the small statistically significant 

increase in rearfoot angle during treadmill running would be of clinical significance. 

However, if clinical decisions are dependent on small changes in maximum rearfoot 

angle then cautious interpretation should be employed when using treadmills. 

2.5.4. Limitations 

Although the same number of stance phases were analyzed for both the 

overground and treadmill conditions there was a smaller number of acceptable foot 

contacts that occurred during overground running when compared to treadmill running. 

For example, as the participant ran across the overground runway only one acceptable 

gait cycle for both the right and left foot was recorded by the camera banks. Therefore, 
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only one stance phase was analyzed for both the right and left foot during overground and 

treadmill running. This may have been a limitation since the lower extremity kinematics 

for that trial relied solely on one single stance phase as opposed to an average of multiple 

stance phases. 

Another limitation may have occurred due to the size of the treadmill running 

surface used in this study. It has been postulated that a narrow (34.5cm) and soft 

treadmill running surface results in an increase in foot pronation during the initial portion 

of the stance phase when compared to a wide (50.5cm) and hard treadmill running 

surface (Sajko and Pierrynowski, 2005). Although the width of the current treadmill was 

43cm, this may not have been wide enough to accommodate each participant's natural 

stride. As a result, a narrower running surface may have caused a disruption to the normal 

movement pattern during running resulting in an increase in maximum rearfoot angle. 

Although this study attempted to recruit individuals who exhibited a heel to toe 

running pattern, it was determined during testing that 3 subjects initially struck the 

ground with their forefoot. This may have had implications on the analysis procedures 

since different running patterns are associated with forefoot strikers when compared to 

heel strikers (McClay and Manal, 1995). However, these individuals were consistent 

forefoot strikers during both overground and treadmill running trials therefore this may 

not have had an effect on the overall results. 

2.5.5 Recommendations for future research 

This was an initial study designed to test the accuracy of treadmills in 

representing overground running with respect to lower extremity kinematics. Suggestions 

for future research are listed below: 
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1. Further examine treadmill size, particularly running surface width, in comparison 

to overground running to determine an acceptable treadmill width threshold for 

accurate lower extremity measurement. 

2. Evaluate the effects of unconventional treadmills (torque treadmills) on lower 

extremity kinematic variables during walking and running. 

3. Include clinical populations in future research since their foot abnormalities are 

typically diagnosed by health professionals during treadmill running. 

2.5.6 Conclusions 

The controversy surrounding treadmill and overground running may be partly 

attributed to previous methodological designs including footwear and foot type which 

may have confounded the results. This experiment attempted to control for these possible 

confounding variables by completing barefoot running trials while ensuring all 

participants demonstrated a subtalar neutral foot type. As a result, this study may better 

demonstrate the accuracy of treadmills in representing the lower extremity kinematics 

associated with overground running. 

This experiment demonstrated that treadmills do not alter typical lower extremity 

kinematics associated with overground running. In particular, there were no significant 

differences between treadmill and overground running with respect to rate of rearfoot 

angle, maximum internal tibial rotation angle and rate of internal tibial rotation. Since 

treadmills allow for the analysis of more gait cycles within a laboratory, they may 

produce more accurate kinematic results when compared to overground running. It is 

important to note that maximum rearfoot angle during treadmill running was significantly 

higher than overground running, albeit less than one degree. Although it is currently 
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unknown whether this small difference is of clinical significance, careful interpretation 

should be employed when examining the magnitude of the maximum rearfoot angle 

obtained during treadmill running. 

The next chapter will examine the mechanics of treadmill running among 

individuals with functional flatfoot (FFF). In addition, an investigation into the effects of 

orthotic intervention during treadmill running will be conducted among this clinical 

population. 
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2.7 Appendices 

Appendix 2.1: Subtalar Neutral Foot Criteria 

1. ACTIVE JOINT MOVEMENTS 

Z/ZP-seated/prone position 
Flexion - knee flexed 

Extension 

Abduction 

Adduction 

Lateral Rotation 

Medial Rotation 

KNEE 
Flexion 
Extension 

Medial Rotation of tibia on 
femur (knee flexed at 90°) 

Lateral Rotation of tibia on 
femur (knee flexed at 90°) 

ANKLE 
Plantarflexion 

Dorsiflexion 

Pronation 

Supination 

Metatarsal Joint Flexibility 

1stMTP.JOINT 
Dorsiflexion 

Plantarflexion 

RANGE OF MOTION 

110° to 120° 

10° to 15° 

30° to 50° 

30° 

40° to 60° 

30° to 40° 

0° to 135° 
0° to 15° 

20° to 30° 

30° to 40° 

30° to 50° 

20° 

15° to 30° 

45° to 60° 
Hold heel & twist 

forefoot 

45° to 60° 

10° to 20° 

PARTICIPANTS 
RANGE 

Good / Poor 
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2. STATIC ALIGNMENT 

HIP 
ASIS 

PSIS 

Iliac Crest 

Skin fold on back 

Curvature in spine 

KNEE 

Genu varum 
Knees apart? 

Genu valgum 
- Ankles apart? 

Genu recurvatum 
Hyperextension of 
knee in standing 

FOOT 
Weight bearing alignment 

1) Heel - tib/cal angle 

2) Midfoot - subtalar neutral 

3) Forefoot 
ARCHES 

Weight bearing 

VISUAL 
INSPECTION 

Level? 

Level? 

Level? 

Excessive? 

Excessive? 

Stand with knees and 
ankles together. To 

participate in the study 
both ankles and knees 

must touch. 

Stand with knees 
locked. 

Is there excessive 
extension at the knee? 

Neutral calcaneal 
valgum is between 4° 

and 6° 
(Posterior view) 

Align tubercles of 
navicular and talus 

(Anterior view) 

Aligned with hindfoot? 

Arches on ground? 
Neutral =Medial up, 

lateral down; 
Pronator=both down; 

PARTICIPANT'S 
ALIGNMENT 

Yes / No 

Yes / No 

Yes / No 

Yes/No 

Yes / No 

Knees Touch? 
Yes / No 

Ankles Touch? 
Yes /No 

Yes /No 

Angle: 

Is there excessive 
movement at the 

subtalar in order to 
align tubercles? 

Yes / No 

Yes / No 

Medial Arch: 
Up / Down 

Lateral Arch: 
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3) DYNAMIC M.KiNMENT 

Heel Toe Running 

Symmetry between left and right 

Heel Strike 

Midstance 

Toe-off 

Supinator=both up 

VISUAL 
INSPECTION 

Walking 

Running 

Lateral (supinated) 

Average pronation 

Re-supination 

Up / Down 

PARTICIPANT'S 
ALIGNMENT 

Yes / No 

Yes / No 

Yes / No 

Yes / No 

Yes/No 

Yes/No 
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Appendix 2.2: Screening Questionnaire 

VOLUNTEER EXCLUSION CRITERIA Date: (MM/DD/YYYY): 

Name: 

Address: 

City, Province: , Postal Code 

Tel #: ( )- Best time to call: 

Age: yrs. Height: cm Weight: kg 

Gender: M F 

Do you have any conditions that limit the use of your legs? Yes / No 

If yes, how much does the condition interfere with your activities? 
little moderate a great 

or none deal 
€ € € 

Describe: 
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Do you have 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
h) 

or have you ever had: 

paralysis 

epilepsy 

cerebral palsy 

multiple sclerosis 

Parkinson's disease 

stroke 

any other neurological disorder 

diabetes 

Yes/No 

Have you ever had frostbite in the lower extremities? Yes / No 

How much do the conditions that you indicated with a 'yes' below interfere with your activities? 

Do 
a) 
b) 
c) 

d) 
e) 
f) 
g) 
h) 
i) 
J) 
k) 

Yes / No 

you have or have you ever had : 
problems with your heart or lungs 
high blood pressure 
blood circulation problems (generally) 

(specifically lower extremities) 
cancer 
arthritis 
rheumatism 
back problems 
a joint disorder 
a muscle disorder 
a bone disorder 
spina bifida 

little 
or none 

€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 

moderate 

€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 

a great 
deal 

€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 
€ 

How much do the conditions that you indicated with a 'yes' below interfere with your activities? 
Yes/No little moderate a great 

or none deal 

Do you have 
a) 
b) 
c) 
d) 
e) 
f) 

or have you ever had these foot problems: 
bunions (hallux valgus) 
hammer toes 
calluses 
ulcerations 
plantar fasciitis 
any other foot problems (diagnosed or not) 

€ 
€ 
€ 
€ 
€ 

€ 

_ € 

€ 

€ 
€ 
€ 
€ 
€ 

€ 

€ 

€ 

€ 
€ 
€ 
€ 
€ 

€ 

€ 

€ 

Have you ever severely injured or had surgery on your (specify) 
a) ankle € € € 
b) knee € € € 
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c) hip € € € 

Have you ever broken any bones? € € € 

Which ones?: 

Have you had any recent (specify) 
a) illnesses € € € 
b) injuries € € € 
c) operations € € € 

Do you have difficulties performing any daily activities? € € € 

Which activities?: 

Are you currently taking any medications (prescription or over-the-counter), or other drugs? 

Medication Ailment Frequency of use 
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CHAPTER 3: EFFECTS OF ORTHOTIC INTERVENTION 
ON LOWER EXTREMITY KINEMATICS AMONG 

INDIVIDUALS WITH FUNCTIONAL FLATFOOT DURING 
TREADMILL RUNNING 

3.1 Abstract 

Foot orthotics are commonly prescribed to runners with functional flatfoot (FFF) 

with the goal of restoring the medial longitudinal arch of the foot. However the 

effectiveness and the mechanism by which orthotics function remains unclear in the 

literature (Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 

2000). The objective of this study was twofold: 1) To determine if FFF is associated with 

excessive motion of the lower extremity during running when compared to individuals 

with a subtalar neutral foot type and 2) To determine if foot orthotics effectively reduce 

lower extremity motion during running among individuals with FFF. A total of 19 

healthy subjects with FFF performed a total of 24 treadmill running trials. Participants 

were casted in a subtalar neutral position by a Certified Pedorthist from which medial 

arch supports were constructed for each participant at different percentages of their 

maximum medial arch height. Randomized running trials were completed at 2 different 

speeds (2.0m/s and 3.0m/s) under 4 conditions (barefoot and 33%, 66% and 100% of 

their maximum arch height). Measures of maximum rearfoot motion and maximum 

internal tibial rotation were used to indicate if the medial arch supports were successful at 

decreasing lower extremity motion. The results from this study indicate that individuals 

with FFF do not experience a significant increase in lower extremity motion during 

running when compared to individuals with a subtalar neutral foot type. In fact, the 

subtalar neutral group demonstrated significantly higher maximum internal tibial rotation 
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angles during running when compared to the FFF group. In addition, the results from this 

study demonstrate that orthotic intervention had a significant effect on lower extremity 

angles among individuals with FFF during running. In particular, maximum rearfoot 

angle and maximum internal tibial rotation angle decreased as the height of the medial 

arch support increased. Orthotic intervention did not appear to significantly affect either 

the rate of rearfoot angle or the rate of internal tibial rotation during running. Therefore, 

orthotic intervention may have a mechanical effect on the motion of the lower extremity 

during running. However, the extent and applicability of this effect should be further 

examined. 

3.2 Introduction 

The number of individuals participating in running as a recreational activity has 

increased dramatically over the past few decades (McClay, 2000). Consequently, 

rehabilitation centers have seen an increase in running related injuries. Previous research 

suggests that runners may be at a higher risk of developing an injury when compared to 

walkers due to the increase in maximum rearfoot angle (Perry and Lafortune, 1995) and 

the faster rate of pronation (Subotnick, 1985) that is observed during running. It has been 

proposed that near perfect biomechanics are required in order to run long distances 

(Subotnick, 1985) therefore it is not surprising that runners who present with abnormal 

biomechanics may be at an even higher risk of developing injury. 

Abnormal running mechanics have been observed among individuals with 

functional flatfoot (FFF). These individuals characteristically present with a complete 

loss or a significant reduction of the medial longitudinal arch while weight bearing (Lee, 
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Vabore, Thomas, Catanzariti, Kogler, Kravitz, Miller and Couture Gassen, 2005). In an 

attempt to quantify the different running mechanics seen among this population 

researchers have found that individuals with FFF excessively and abnormally pronate for 

a longer period of time during the stance phase (Lee, Vabore, Thomas, Catanzariti, 

Kogler, Kravitz, Miller and Couture Gassen, 2005) or even throughout the entire stance 

phase (McClay and Manal, 1998). In addition, excessive pronators have demonstrated a 

significant increase in peak rearfoot eversion (McClay and Manal, 1997; McClay and 

Manal, 1998) and peak tibial internal rotation excursion (McClay and Manal, 1997) 

during running when compared to normal pronators. Further, excessive motion of the 

lower extremity during running has been associated with an increase in injury (McClay 

and Manal, 1998). However there is some controversy surrounding the literature in this 

area as other research has shown no significant differences in rearfoot motion between 

excessive and normal pronators during walking (Hunt and Smith, 2004). Thus, further 

research is required to better understand the mechanics that are occurring among the FFF 

population during running and walking. 

Currently, orthotic prescription is recommended for individuals with symptomatic 

FFF in order to control the excessive motion of the lower extremity and thus theoretically 

decrease running related injuries. There is general agreement among the literature with 

respect to the clinical effectiveness of orthotic intervention among runners. In particular, 

the use of foot orthotics has been positively associated with patient satisfaction 

(Donatelli, Hurlbert, Conaway and St.Pierre, 1988; Moraros and Hodge, 1993) and pain 

reduction (Gross, Davlin and Evanski, 1991; Moraros and Hodge, 1993; Nawoczenski, 

Cook and Saltzman, 1995; Walter, Ng and Stoltz, 2004). 
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From a mechanical perspective, orthotics are thought to function by aligning the 

structures of the lower extremity and thus, bringing the running mechanics to resemble a 

more 'normal' pattern. Research pertaining to the mechanical effectiveness of orthotics 

has focused on measurements of rearfoot (Mundermann, Nigg, Humble and Stefanyshyn, 

2003; Nester, van der Linden and Bowker, 2003; MacLean, McClay Davis and Hamill, 

2006) and tibial kinematics (Nawoczenski, Cook and Saltzman, 1995; Stacoff, 

Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; Mundermann, 

Nigg, Humble and Stefanyshyn, 2003). Many studies suggest a significant reduction in 

maximum rearfoot eversion angle and velocity (Mundermann, Nigg, Humble and 

Stefanyshyn, 2003; MacLean, McClay Davis and Hamill, 2006) and maximum tibial 

rotation angle and velocity (Nawoczenski, Cook and Saltzman, 1995; Stacoff, 

Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; Mundermann, 

Nigg, Humble and Stefanyshyn, 2003) during running while wearing foot orthotics. 

However, it seems that for every study showing a positive effect of foot orthotics there is 

a study indicating no significant effects of foot orthotics on rearfoot motion (Stacoff, 

Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; Stackhouse, 

McClay Davis and Hamill, 2004) or tibial rotation (Nigg, Khan, Fisher and Stefanyshyn, 

1998) during running. 

The variability within the results may be partly attributed to study design and 

participant selection criteria. In terms of study design, the decision to wear footwear 

during the running trials may contribute to the contradictory results seen in the literature. 

Studies investigating the effects of footwear on lower extremity kinematics during 

running indicate that the heel and the heel counter of the shoe may move at different 
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rates. More specifically, the heel has been shown to move less and at a slower rate than 

the heel counter (Stacoff, Reinschmidt and Stussi, 1992). Nigg (Nigg, 1986) 

demonstrated that a difference of 2-3 deg is observed depending on if the markers are 

placed on the heel or the heel counter. As a result, studies with tracking markers placed 

on the heel counter of the shoe may be reporting higher heel motion than what is actually 

occurring. In addition, footwear has been shown to significantly restrict the torsion of the 

foot during running, resulting in an increase in foot pronation when compared to barefoot 

running (Stacoff, Kaelin, Stuessi and Segesser, 1989; Stacoff, Kalin and Stussi, 1991). 

Therefore, controlling for footwear is essential in order to understand the mechanisms 

behind orthotic interventions. 

Inadequate participant selection criteria may be another factor contributing to the 

inconclusive results of orthotic intervention studies. Many of these studies have been 

conducted on 'healthy' populations who do not fit the criteria for requiring foot orthotics. 

They do not demonstrate abnormal mechanics during running nor do they report any pain 

or injury of the lower extremity. It is possible that foot orthotics may not have any 

significant effects on lower extremity kinematic variables among 'healthy' populations 

since they already demonstrate normal lower extremity mechanics during running. 

Therefore understanding the mechanism of orthotic intervention among a clinical 

population, such as FFF, may provide a better understanding of the mechanical effects of 

foot orthotics during running. 

3.2.1 Specific aims 

The purpose of this study was to investigate the running mechanics associated 

with FFF and further, to determine the effects of orthotic intervention during running 
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among this population. Current therapeutic modalities involve supporting the medial 

longitudinal arch which has been based on the assumption that individuals with FFF 

experience excessive motion of the lower extremity during running and thus, a higher 

incidence of running related injuries. This study may provide evidence for a mechanical 

effect of orthotics thereby indicating that realignment of the lower extremity produces a 

reduction in lower extremity motion. As a result, both clinicians and researchers can be 

confident in orthotic prescription and mechanism which may consequently lead to future 

enhancement of foot orthotics and ultimately to a better quality of life among individuals 

with FFF. 

3.2.2 Hypotheses 

Hoi: Individuals with FFF will demonstrate similar lower extremity kinematics during 

barefoot treadmill running when compared to individuals with a subtalar neutral foot 

type. 

HAI: Individuals with FFF will demonstrate an increase in motion of the lower extremity 

during barefoot treadmill running when compared to individuals with a subtalar neutral 

foot type. 

Ho2: Individuals with FFF will demonstrate similar lower extremity motion during 

treadmill running while wearing medial arch supports and while running barefoot. 

HA2: Orthotic intervention will significantly affect lower extremity motion during 

treadmill running such that barefoot > 33% > 66% > 100% among individuals with FFF. 
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3.3 Method 

3.3.1 Participants 

A total of 19 healthy individuals (mean ± standard deviation: age, 23.8 ± 3.7 

years; height, 173.8 ± 9.3 cm; weight, 71 ± 14.4 kg; 10 women, 9 men) with FFF 

participated in this study. This study was reviewed and approved by the University 

Research Ethics Board at Wilfrid Laurier University. Study participants, recruited from 

the university population, were informed of the requirements and signed consent forms 

prior to testing. Individuals were deemed eligible to participate in this study if they met 

our predetermined FFF criteria. 

The FFF criteria consisted of static and dynamic visual inspections of pelvic and 

knee alignment, a rearfoot angle of greater than 10 deg and midfoot collapse while 

weight bearing (Appendix 3.1). Rearfoot angle was determined by using a goniometer to 

measure the angle that resulted from the intersection of two lines: one line connected the 

mid calf and the Achilles tendon and the second line connected the superior and inferior 

aspects of the calcaneus (Figure 3.1). All participants had a rearfoot angle of greater than 

10 deg (range 10-15 deg) while standing, with the group mean ± standard deviation being 

11.8 ± 1.3 deg. In addition, participants completed a screening questionnaire (Appendix 

3.2) and were excluded from this study if they had any neurological or physical condition 

that affected the use of their lower extremities or if they regularly wore prescribed 

orthotics. 

Based on our exclusion criteria, all subjects demonstrated characteristics 

consistent with FFF. Only one subject demonstrated genu varum (bow-legged spanning 4 

finger width) which was classified as atypical knee alignment. Running observations 
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indicated that 15 participants initially struck the ground with the lateral border of their 

heel while the remaining 4 subjects were mid/forefoot strikers. More than half (58%) of 

the subjects had never worn an orthotic, with the remaining 42% wearing prescribed 

orthotics for gym and sporting activities averaging a few times a week. None of the 

participants wore orthotics on a regular, daily basis. 

Lower extremity running mechanics were also compared between previously 

tested individuals with a subtalar neutral foot type and the individuals with FFF in this 

study. Further details pertaining to the subtalar neutral group can be found in section 

Figure 3.1: Rearfoot angle as determined by the difference between the angle of the leg and the angle of 
the calcaneus (RF angle = 8ieg - Ocaicanms)-

3.3.2 Experiment set-up and data collection 

The laboratory used for data collection measured 10m X 8m and was set up for 

the treadmill running trials as illustrated in Figure 3.2. The treadmill was positioned with 

the back, right corner resting on the force plate. The vertical force information allowed 
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for the determination of heel contact with the force from the right foot having a higher 

magnitude than the left foot. 
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Figure 3.2: Laboratory set-up for the treadmill running trials. 

Kinematic data was collected at 100Hz using 2 OptoTrak 3020 camera banks 

(Northern Digital Inc., Waterloo, Canada). The data from the initial 9 subjects was 

collected using NDI 1st Principles computer software. Due to difficulties encountered 

with that software, the data from the remaining 10 subjects was collected using 

ToolBench computer software. Since the collection software is used to record the raw 

marker positions, changing the software program did not affect the study results. A total 

of 20 infrared light-emitting diodes (IRED's) were placed on each rearfoot (4) and tibia 

(6) in order to track the motion of these segments (Figure 3.3). 
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Figure 3.3: Kinematic marker placement at the rearfoot and tibia in order to track rearfoot angle and 
internal tibial rotation during running. 

The treadmill (Figure 3.4) used for the treadmill running trials was a Precor 

M9.21si (Precor Inc., Bothell, WA USA). The dimensions of the running surface was 

129.5cm X 43cm with the overall length, width (including handrails), and height of the 

treadmill measuring 170cm, 71cm and 111 .8cm respectively. It contained a 2.0 hp motor. 
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Figure 3.4: Treadmill used in this study (M9.21si, Precor Inc., Bothell, WA USA). 

3.3.3 Procedure 

This study consisted of three sessions. During Session 1 the FFF criteria and the 

exclusion questionnaire were completed. If the participants were deemed eligible based 

on the criteria and the questionnaire they were invited back to complete Session 2. 

During Session 2, participants met with a Certified Pedorthist who made a 

subtalar neutral foam cast of their feet. From the foam cast a mold of the foot was made 

by Pedorthic Services Lab (Waterloo, Canada). Maximum medial arch height was then 

measured from this foot mold. Customized medial arch supports of 33%, 66% and 100% 

of the maximal medial arch height were created for each participant. Please refer to 
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Appendix 3.3 for details pertaining to the construction of the medial arch supports. The 

maximum medial arch heights as well as the 33%, 66% and 100% arch support heights 

for each participant can be seen in Table 3.1. Figure 3.5 illustrates the final arch supports 

of one subject for each orthotic condition. 

Figure 3.5: Moving left to right, this shows the completed arch supports of 100%, 66% and 33% for one 
subject. 
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Table 3.1: Measurements of maximum medial arch height and the subsequent arch supports at 33%, 66% 
and 100%. All values were rounded to the nearest mm. The maximum height of the arch support was 
16mm therefore the 100% condition could only have a maximum of 16mm regardless of the measurement. 
The calculations for 33% and 66% were completed using the measured maximum medial arch height as 
determined by the electronic caliper. 
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Once the arch supports had been constructed, participants were invited back for 

the Session 3. This session consisted of treadmill running at two different speeds under 4 

108 



www.manaraa.com

orthotic conditions. Therefore a total of 8 randomized conditions were completed 

including: 

Barefoot - 2.0m/s 
Barefoot - 3.0m/s 
Medial Arch Support (33%) - 2.0m/s 
Medial Arch Support (33%) -3.0m/s 
Medial Arch Support (66%) - 2.0m/s 
Medial Arch Support (66%) - 3.0m/s 
Medial Arch Support (100%) - 2.0m/s 
Medial Arch Support (100%) - 3.0m/s 

Prior to beginning the treadmill running trials, the kinematic markers were applied to the 

rearfoot and tibia of each leg on the participant as illustrated in Figure 3.3. The rearfoot 

angle was measured and recorded with the subject standing barefoot prior to commencing 

the study. They were then given as many treadmill practice trials as required in order to 

feel comfortable running at 2.0m/s and 3.0m/s. A spotter stood beside them throughout 

all running trials to ensure their safety. Once participants felt comfortable on the treadmill 

they stepped off in order to have the arch support secured to their foot. Athletic tape was 

used to adhere the arch supports to the plantar surface of the foot, specifically, to the 

medial longitudinal arch. Tape strips of 15-20cm in length were placed on the medial 

aspect of the foot and wrapped under the bottom of the foot covering the arch support 

before being secured to the lateral aspect of the foot. A smaller strip of athletic tape was 

used to anchor the ends of the tape to the foot ensuring not to cover the metatarsal 

phalangeal (MTP) joints. This attachment technique sufficiently kept the arch support in 

place throughout testing. In addition, participants reported that the taping did not limit the 

normal movement of their foot. 

Once the participant was back on the treadmill the speed was increased until the 

desired speed was achieved. A total of three 5 second trials were collected before the 
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treadmill speed was returned to a comfortable walking pace as set by the participant. On 

the participants command, the treadmill speed was again increased to record three 5 

second consecutive trials at the remaining speed. Once these trials were collected the 

speed was decreased to a comfortable walking pace until the participant indicated that 

they had sufficiently cooled down and were ready to step off. The next arch support was 

then adhered to the foot and the rearfoot angle was measured prior to beginning the 

running trials. Rearfoot measurements were taken during each orthotic condition to 

ensure that the arch supports were having an effect on the structure of the medial 

longitudinal arch. In addition, the participant was asked to report which orthotic condition 

was the most and least comfortable during running. Following completion of all treadmill 

running trials, the participant stood quietly on the treadmill while a 5 second static trial 

was recorded. Thus, Session 3 involved the completion of 25 trials (24 running and 1 

static). 

3.3.4 Data analysis and statistics 

The 8 conditions in this protocol allowed for the analysis of orthotic intervention 

on lower extremity kinematics during treadmill running at two different speeds. The 

independent variables in this analysis were orthotic intervention (barefoot, 33%, 66%, or 

100%), velocity (2.0m/s or 3.0m/s) and foot (right or left). The barefoot running 

conditions from this FFF population (n=19) were also compared to barefoot running trials 

from the subtalar neutral population (n=19) in order to determine if individuals with FFF 

experienced excessive rearfoot motion and internal tibial rotation during running (Table 

3.2). The independent variables in this analysis were group (FFF or subtalar neutral), 

velocity (2.0m/s or 3.0m/s) and foot (right or left). The dependent kinematic variables in 

110 



www.manaraa.com

both analyses were rearfoot angle (used to measure foot pronation) and internal tibial 

rotation. Please refer to Table 3.3 for a description of each kinematic variable analyzed in 

this study. A priori analysis of estimation of sample size was conducted prior to subject 

recruitment in order to ensure that a statistical power of 0.8 was achieved. 

Table 3.2: Repeated measures analysis of variance was conducted between subtalar neutral and FFF 
populations with no arch support as well as between orthotic interventions among the FFF populations. 

SUBTALAR NEUTRAL FFF 
Rearfoot Motion 

2.0m/s & 3.0m/s 

Tibial Rotation 

2.0m/s & 3.0m/s 

Reartoot Motion 

2.0m/s&3.0m/s 

tibial Rotation 

2.0m/s&3.0m/s 

Rearfoot Motion 

2.0m/s & 3.0m/s 

Tibial Rotation 

2.0m/s & 3.0m/s 

Rearfoot Motion 

2.0m/s & 3.0m/s 

Tibial Rotation 

2.0m/s & 3.0m/s 

Rearfoot Motion 

2.0m/s & 3.0m/s 

Tibial Rotation 

2.0m/s & 3.0m/s 

Rearfoot angle was used as an estimate of foot pronation due to the difficulty in 

measuring the tri-planar movement this variable. In this study, rearfoot angle was 

calculated using the four rearfoot kinematic markers (Figure 3.3). The top two markers 

allowed for the determination of the absolute angle of the leg relative to the horizontal; 

the bottom two markers were used to determine the absolute angle of the calcaneus 

relative to the horizontal. The relative angle of the rearfoot was determined by subtracting 

the absolute angle of the leg from the absolute angle of the calcaneus: 

Rearfoot angle = 0ieg - 8caicaneus 
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The second dependent variable, internal tibial rotation, was tracked by six 

kinematic markers that were placed on the tibia (Figure 3.3). Computer software (Visual 

3D) was used to create a model of the right and left tibia for each subject. This model was 

created from a standing trial and then assigned to the running trials. Thus, this study 

analyzed internal tibial rotation relative to the static position of the tibia. Internal tibial 

rotation was calculated within the Visual 3D software and defined as rotation around the 

vertical (z) axis in the transverse plane. Both rearfoot motion and internal tibial rotation 

were calculated for every frame within each 5 second trial. 

Table 3.3: A description of the kinematic variables analyzed in this study. All angles and rates were 
calculated for every frame during each 5 second trial. 

Kinematic Variable 

Maximum Rearfoot Angle 

Rate of Rearfoot Angle 

Maximum Internal Tibial Rotation 
Angle 

Description 

Rearfoot angle (RFe) was determined by 
calculating the difference between the leg 
and calcaneal angles. Maximum rearfoot 
angle (Max RFe) was defined as the 
maximum rearfoot angle achieved during 
the stance phase minus the rearfoot angle at 
heel contact: 

M a x RFe = RFe max stance - RFe heel contact 

Rate of rearfoot angle (RFrate) was defined 
as the rate at which the rearfoot achieved 
the maximum rearfoot angle during stance. 
It was calculated by dividing the Max RFe 
by the difference in time from heel contact 
to maximal stance: 

RFratP= MaxRFo 
tRF8 max stance — tRF8 heel contact 

Internal tibial rotation angle (ITRe) was 
defined as rotation around the vertical (z) 
axis in the transverse plane and was 
calculated using Visual 3D software. 
Maximum ITRe was defined as the 
difference between ITR8 at heel contact 
and maximal stance: 

112 



www.manaraa.com

Rate of Internal Tibial Rotation 

Foot Placement 
(Medial-lateral) 

Foot Placement 
(Anterior-posterior) 

M a X I T R g = I T R G max stance — I T R 9 heel contact 

Rate of internal tibial rotation (ITRra£e) was 
defined as the rate at which the tibia 
achieved the maximum internal rotation 
angle during stance. It was calculated by 
dividing the Max ITRe by the difference in 
time from heel contact to maximal stance : 

ITRrafP= MaxITRo 
tlTRS max stance ~~ tiTR8 heel contact 

The medial-lateral foot placement during 
treadmill running was determined using the 
x component of markers 16 or 20 for the 
left and right foot, respectively. 
The anterior-posterior foot placement 
during treadmill running was determined 
using the y component of markers 16 or 20 
for the left and right foot, respectively. 

A program was written in Visual Basic specifically for the analyses in this study. 

This program allowed for the selection of OptoTrak, force plate and Visual 3D data and 

then displayed them in a graph. This graph showed the position of the right (marker 20) 

or left (marker 16) foot as well as the vertical force. The vertical force data was collected 

during this study in order to more accurately determine when heel contact and toe off had 

occurred. After selecting an area of the graph that correlated with an increase in vertical 

force, rearfoot and internal tibial rotation curves were produced. From these curves, 

maximum angles and rates of both the rearfoot and tibia were determined. During each 

trial, 5 stance phases were selected and analyzed for each of the right and left foot. 

The results were analyzed using the SAS computerized statistical package. 

Analysis of the orthotic intervention was employed using a three factor (4 conditions X 2 

speeds X 2 feet) within-subject repeated measures ANOVA with the a priori alpha set at 

0.05. In order to determine where the significant differences found in the ANOVA's 
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occurred, Tukey's Studentized Range (HSD) post hoc procedure was employed. Analysis 

of foot type on lower extremity kinematics was completed using a one factor (2 groups 

(foot type)) between subjects ANOVA with the a priori alpha set at 0.05. All rearfoot and 

tibial rotation outliers with a standard residual greater than 3.5 were investigated. A total 

of 70 tibial rotation outliers were excluded from this study for reasons that included 

missing data during stance ranging from 15 frames to the entire stance phase, externally 

rotated tibia at heel contact or maximum internal rotation of the tibia prior to heel contact. 
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3.4 Results 

The purpose of this study was twofold: 1) to determine if individuals with FFF 

experienced an increase in lower extremity motion during running when compared to 

individuals with a subtalar neutral foot type and 2) to determine the effects of medial arch 

supports on lower extremity motion during running among individuals with FFF. For the 

purpose of this study, the medial arch support conditions are referred to as orthotic 

intervention. 

This section begins with a comparison of the lower extremity kinematics during 

running among individuals with subtalar neutral and FFF foot types. Specifically, 

analysis between the 2 groups in terms of the demographics, rearfoot motion and internal 

tibial rotation variables are discussed. Then, the effects of orthotic intervention among 

individuals with FFF during running are presented. First, a description of the effects of 

medial arch supports on static rearfoot angle as well as the participants perceived comfort 

ratings for each level of medial arch support are presented. Then, the results for each 

dependent variable are presented: 1) maximum rearfoot angle, 2) rate of rearfoot angle, 3) 

maximum internal tibial rotation angle, 4) rate of internal tibial rotation, and 5) foot 

placement during treadmill running. The result of each variable begins with a description 

of how orthotic intervention, running speed and foot affected that particular variable as 

well as any interactions that occurred. The included figures illustrate the effects of 

orthotic intervention and running speed on the dependent variable of interest. Following 

these figures are graphs which illustrate the interactions for each variable if they were 

found to occur. The tables at the end of this section summarize the effects of orthotic 
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intervention (Table 3.6), running speed (Table 3.7) and foot (Table 3.8) on each of the 

dependent variables. 

3.4.1 Lower extremity kinematics during running between subtalar 

neutral and FFF foot types 

Demographics 

There were no significant differences between the participants within the two 

groups with respect to age (p=0.0646), weight (p=0.9316) or height (p=0.4718). In 

addition, both groups were comprised of 10 females and 9 males. As expected, the 

individuals with FFF had a significantly higher static rearfoot angle when compared to 

individuals with a subtalar neutral foot type for both the left (p<0.0001) and right 

(p<0.0001) feet. Please refer to table 3.4 for further details pertaining to the 

characteristics of these two groups. Although a comparison cannot be made between 

groups, the FFF group had an average medial arch height of 15.6 ± 3.2mm (range: 11-

23mm) and 16.5 ± 2.1mm (range: 12-20mm) for the left and right foot, respectively 

(Table 3.1). 
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Table 3.4: Characteristics of the two groups: Subtalar neutral and FFF. Values are presented as mean 
(standard deviation). '*' denotes significance. 

Group 

Subtalar 
Neutral 

FFF 

p value 

Age (yrs) 

21.8(3.2) 

23.8 (3.7) 

0.0646 

Weight 
(kg) 

70.5(13.7) 

71.0(14.4) 

0.9316 

Height 
(cm) 

172.1 (9.8) 

173.8(9.3) 

0.4718 

Static 
Rearfoot 

Angle 
Left 

(deg) * 

4.6(1.1) 

11.5(1.2) 

<0.0001 

Static 
Rearfoot 

Angle 
Right 

(deg) * 

4.4(1.0) 

12.2(1.3) 

<0.0001 

Gender 

10 females 
9 males 

10 females 
9 males 
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Rearfoot Motion 

Maximum rearfoot angle was not significantly different between subtalar neutral 

and FFF individuals (p=0.0962). The maximum rearfoot angles obtained for subtalar 

neutral and FFF individuals were 9.7 ± 3.3 deg and 10.4 ± 4.0 deg, respectively (Figure 

3.6). The rate of rearfoot angle did not differ significantly between the two groups 

(p=0.3478) as subtalar neutral and FFF individuals demonstrated values of 100.9 ± 46.8 

deg/sec and 114.6 ± 70.0 deg/sec, respectively (Figure 3.7). Table 3.5 provides a 

summary of the rearfoot motion variables between the two groups. 
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Figure 3.6: Maximum rearfoot angle (mean + standard deviation) achieved during running between the 
two groups. 
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Rate of Rearfoot Angle during Running 
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Figure 3.7: Rate of rearfoot angle (mean + standard deviation) achieved during running between the two 
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Internal Tibial Rotation 

Maximum internal tibial rotation angle was significantly higher among the 

subtalar neutral individuals when compared to the FFF individuals (p<0.0001). The 

subtalar neutral and FFF groups demonstrated maximum internal tibial rotation angles of 

13.5 ± 8.4 deg and 10.0 ± 7.6 deg, respectively (Figure 3.8). The rate of internal tibial 

rotation was not significantly different between the two groups (p=0.3885) as subtalar 

neutral and FFF demonstrated values of 104.6 ± 69.0 deg/sec and 102.0 ± 80.3 deg/sec, 

respectively (Figure 3.9). Table 3.5 provides a summary of the internal tibial rotation 

variables between groups. 
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Maximum Internal Tibial Rotation Angle during Running 

25 

5P 

(B — ' 
2 «> 
E ? 
2 < c 
+* 
c 

?o 

15 

10 

5 

* T " ; 

Subtalar Neutral F o o t T y p e FFF 

Figure 3.8: Maximum internal tibial rotation angle (mean + standard deviation) achieved during running 
between the two groups. The symbol' W' denotes significance of p<0.05. 
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Figure 3.9: Rate of internal tibial rotation (mean + standard deviation) achieved during running between 
the two groups. 
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Table 3.5: A summary of the lower extremity kinematic variables between the two groups. '*' denotes 
significance of p<0.05. 

Group 

Subtalar 
Neutral 

FFF 

p value 

Maximum 
Rearfoot 

Angle (deg) 

9.7 (3.3) 

10.4(4.0) 

0.0962 

Rate of 
Rearfoot Angle 

(deg/sec) 

100.9(46.8) 

114.6(70.0) 

0.3478 

Maximum 
Internal 
Tibial 

Rotation 
Angle (deg) * 

13.5(8.4) 

10.0(7.6) 

<0.0001 

Rate of 
Internal 
Tibial 

Rotation 
(deg/sec) 

104.6(69.0) 

102.0(80.3) 

0.3885 
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3.4.2 Effects of medial arch supports on static rearfoot angle 

Static measurement of the rearfoot revealed a decrease in the rearfoot angle 

between each orthotic condition as the medial arch height increased. Static rearfoot 

angles were 11.8 ± 1.3 deg, 11.3 ± 1.4 deg, 10.1 ±1.3 deg and 9.2 ±1.3 deg for each of 

the BF, 33%, 66% and 100% orthotic intervention conditions, respectively (Figure 3.10). 

Analysis involving a single factor ANOVA revealed significance between each orthotic 

condition (p<0.05) such that the static rearfoot angle at BF > 33% > 66% > 100%. This 

result indicates that the medial arch supports were having a significant effect on the 

structure of the foot. 
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Effect of Medial Arch Support on Static Rearfoot Angle 
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Figure 3.10: Effects of medial arch support on the static rearfoot angle measurement. Conditions include 
barefoot (BF) and 33%, 66% and 100% of the participants' maximum medial arch height. Significance 
(p<0.05) was achieved between each orthotic condition. 
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3.4.3 Perceived comfort ratings for each level of medial arch support 

Half of the participants reported that the orthotic intervention condition of 33% 

was the most comfortable to wear. In addition, 37.5% and 12.5% reported that the most 

comfortable orthotic condition was 66% and 100%, respectively. None of the participants 

reported the barefoot condition as being the most comfortable (Figure 3.11). A chi-square 

analysis revealed a critical value for k-l - 3 df, x2.05 (3) = 7.82. Our calculations for the 

chi-square test demonstrated a value of 10 which is greater than the critical value of 7.82 

therefore the participant's choices were not random. Participants chose the orthotic 

conditions of 33% and 66% as the most comfortable conditions at greater than chance 

levels. 

The majority of the participants reported that the 100% orthotic condition was the 

least comfortable (68.75%). A total of 12.5% of the participants reported that each of the 

orthotic conditions of 33% and 66% were the least comfortable. None of the participants 

reported the barefoot condition as being the least comfortable (Figure 3.12). In addition, 

one participant reported that all the orthotic conditions were comfortable. A chi-square 

analysis revealed a critical value for k-l = 3 df, x2.os (3) = 7.82. Our calculations for the 

chi-square test demonstrated a value of 19.4 which is greater than the critical value of 

7.82 therefore the participant's choices were not random. Participants chose the orthotic 

condition of 100% as the most uncomfortable condition at greater than chance levels. 
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Most Comfortable Orthotic Condition (n=16) 
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Figure 3.11: Participants perceived comfort ratings for the most comfortable orthotic condition (Barefoot, 
33%, 66% and 100%). 
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Least Comfortable Orthotic Condition (n-16) 

BBF 

• 33% 

D66% 

D100% 

Figure 3.12: Participants perceived comfort ratings for the least comfortable orthotic condition (Barefoot, 
33%, 66% and 100%). 
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3.4.4 Maximum rearfoot angle 

Orthotic intervention had a significant effect on maximum rearfoot angle 

(p<0.0001). More specifically, the maximum rearfoot angle significantly decreased as the 

medial arch height increased. Significance was reached between each condition with 

maximum rearfoot angles of 10.4 ± 4.0 deg, 10.1 ± 3.8 deg, 9.4 ± 3.7 deg and 8.8 ± 3.6 

deg for the barefoot, 33%, 66% and 100% conditions, respectively (Table 3.6). Running 

speed also had a significant effect on maximum rearfoot angle (p=0.0001) as running at 

2.0m/s and 3.0m/s was associated with maximum rearfoot angles of 9.2 ± 3.7 deg and 

10.2 ± 3.9 deg, respectively (Table 3.7). Maximum rearfoot angle was not significantly 

affected by foot (p=0.4916) as the left and right foot had maximum angles of 9.4 ±3.1 

deg and 9.9 ± 4.4 deg, respectively (Table 3.8). Figure 3.13 illustrates the effects of 

orthotic intervention and running speed on maximum rearfoot angle. 

No significant interactions were found to occur with maximum rearfoot angle. 
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Figure 3.13: The effect of orthotic intervention on maximum rearfoot angle while running at 2.0m/s and 
3.0m/s. Mean values are presented; standard deviations are presented on page 130. 
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3.4.5 Rate of rearfoot angle 

Orthotic intervention did not have a significant effect on the rate of rearfoot angle 

(p=0.2198). The rate of rearfoot angles obtained for the BF, 33%, 66% and 100% 

conditions were 115.2 ± 69.6 deg/sec, 121.8 ± 76.7 deg/sec, 119.3 ± 79.1 deg/sec and 

114.6 ± 79.5 deg/sec, respectively (Table 3.6). The rate of rearfoot angle was 

significantly affected by running speed (p<0.0001). Specifically, running at 2.0m/s and 

3.0m/s was associated with values of 99.2 ± 61.5 deg/sec and 136.2 ± 84.8 deg/sec, 

respectively (Table 3.7). A significant difference with respect to the rate of rearfoot angle 

was observed between feet (p<0.0045). For example, the left foot (128.7 ± 79.7 deg/sec) 

had an increased rate of rearfoot angle when compared to the right foot (106.7 ±71.3 

deg/sec) (Table 3.8). Figure 3.14 illustrates the effects of orthotic intervention and 

running speed on the rate of rearfoot angle. 

There was a significant interaction between running speed and foot (p=0.0435). 

More specifically, the rate of rearfoot angle was significantly less with the right foot 

(86.4 ± 56.4 deg/sec) when compared to the left foot (112.1 ± 63.8 deg/sec) while 

running at 2.0m/s only (Figure 3.15). A significant interaction was also demonstrated 

between orthotic intervention and foot (p=0.0186). More specifically, there was a 

decrease in the rate of rearfoot angle with the right foot as the medial arch height 

increased (BF, 110.4 ± 65.7 deg/sec; 33%, 109.1 ± 67.9 deg/sec; 66%, 110.7 ± 80.5 

deg/sec; 100%, 96.6 ± 69.3 deg/sec) whereas the left foot experienced an increase in the 

rate of rearfoot angle as the medial arch height increased (BF, 119.9 ± 72.9 deg/sec; 33%, 

134.3 ± 82.7 deg/sec; 66%, 127.8 ± 76.9 deg/sec; 100%, 132.7 ± 84.9 deg/sec) while 

running at 2.0m/s (Figure 3.16). 
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Effect of orthotic intervention on rate of rearfoot angle 
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Figure 3.14: The effect of orthotic intervention on the rate of rearfoot angle while running at 2.0m/s and 
3.0m/s. Mean values are presented; standard deviations are presented on page 132. 
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Interaction between running speed and foot (p=0.0435) 
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Figure 3.15: The interaction between running speed and foot (p=0.0435) on the rate of rearfoot angle. 
Mean values presented; standard deviations are presented on page 132. 
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Interaction between orthotic condition and foot (p=0.0186) 
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Figure 3.16: The interaction between orthotic condition and foot (p=0.0186) on the rate of rearfoot angle. 
Mean values presented; standard deviations are presented on page 132. 
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3.4.6 Maximum internal tibial rotation angle 

Maximum internal tibial rotation angle was significantly affected by orthotic 

intervention (p=0.0019) as maximum internal tibial rotation angles of 10.0 ± 7.5 deg and 

10.2 ± 8.3 deg, 9.6 ± 7.6 deg and 8.9 ± 7.2 deg were associated with BF, 33%, 66% and 

100%, respectively. Significance was determined between each orthotic condition with 

the exception of BF vs 33% (Table 3.6). Running speed had a significant effect on 

maximum internal tibial rotation angles (p=0.0087) as 2.0m/s and 3.0m/s demonstrated 

9.1 ± 7.5 deg and 10.3 ± 7.8 deg, respectively (Table 3.7). Maximum internal tibial 

rotation angle was also significantly affected by foot (p=0.0072) as the left and right foot 

produced maximum internal tibial rotation angles of 12.1 ± 8.2 deg and 7.2 ± 6.2 deg, 

respectively (Table 3.8). Figure 3.17 illustrates the effects of orthotic intervention and 

running speed on maximum internal tibial rotation angle. 

There was a significant interaction between orthotic intervention and running 

speed (p=0.0035). More specifically, there was a significant decrease in maximum 

internal tibial rotation angle as medial arch height increased while running at 2.0m/s (BF, 

9.7 ± 7.3 deg; 33%, 9.2 ± 8.0 deg; 66%, 8.8 ± 7.4 deg; 100%, 8.5 ± 7.1 deg) when 

compared to running at 3.0m/s (BF, 10.3 ± 7.6 deg; 33%, 11.3 ± 8.5 deg; 66%, 10.3 ± 7.7 

deg; 100%, 9.2 ± 7.3 deg) (Figure 3.18). 
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Figure 3.17: The effect of orthotic intervention on maximum internal tibial rotation angle while running at 
2.0m/s and 3.0m/s. Mean values are presented; standard deviations are presented on page 136. 
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Figure 3.18: The interaction between orthotic intervention and running speed (p=0.0035) on maximum 
internal tibial rotation angle. Mean values presented; standard deviations are presented on page 136. 
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3.4.7 Rate of internal tibial rotation 

Orthotic intervention did not have a significant effect on the rate of internal tibial 

rotation (p=0.2222). The rates of internal tibial rotation obtained for the BF, 33%, 66% 

and 100% conditions were 101.7 ± 80.1 deg/sec, 102.9 ± 77.2 deg/sec, 98.2 ± 66.0 

deg/sec and 95.8 ± 63.1 deg/sec, respectively (Table 3.6). Running speed had a 

significant effect on the rate of internal tibial rotation (p<0.0001) as 2.0m/s and 3.0m/s 

demonstrated values of 85.7 ± 60.3 deg/sec and 113.5 ± 79.5 deg/sec, respectively (Table 

3.7). The rate of internal tibial rotation was not significantly affected by foot (p=0.3924) 

as the left and right foot produced values of 101.4 ± 64.4 deg/sec and 97.8 ± 79.0 deg/sec, 

respectively (Table 3.8). Figure 3.19 illustrates the effects of orthotic intervention and 

running speed on the rate of internal tibial rotation. 

No significant interactions were found to occur with the rate of internal tibial 

rotation. 
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Figure 3.19: The effect of orthotic intervention on the rate of internal tibial rotation angle while running at 
2.0m/s and 3.0m/s. Mean values are presented; standard deviations are presented on page 139. 
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3.4.8 Variability of foot placement during treadmill running 

Medioloateral 

Participants were found to run on the treadmill with no significant mediolateral 

discrepancies between foot strikes. Participants consistently landed within 5cm of 

subsequent foot strikes in this direction. 

Anterior-posterior 

Participants also demonstrated no significant anterior-posterior discrepancies 

between foot strikes. Participants consistently landed within 10cm of subsequent foot 

strikes in this direction. 
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Table 3.6: The effect of orthotic intervention (BF, 33%, 66%, 100%) on the dependent variables. Values 
represented as mean (standard deviation). 
* denotes significance (p<0.05) between BF and 33% 
£2 denotes significance (p<0.05) between BF and 66% 
oo denotes significance (p<0.05) between BF and 100% 
§ denotes significance (p<0.05) between 33% and 66% 
• denotes significance (p<0.05) between 33% and 100% 
8 denotes significance (p<0.05) between 66% and 100% 

Max Rearfoot Angle (deg) *£2°°§*8 

Rate of Rearfoot Angle (deg/sec) 

Max Internal Tibial Rotation Angle (deg) 
Q~§*8 

Rate of Internal Tibial Rotation (deg/sec) 

Barefoot 

10.4(4.0) 

115.1 
(69.5) 

10(7.5) 

101.7 
(80.1) 

33% 

10.1 (3.8) 

121.8 
(76.7) 

10.2(8.3) 

102.9 
(77.2) 

66% 

9.4 (3.7) 

119.3 
(79.1) 

9.6 (7.6) 

98.2 
(66.0) 

100% 

8.8 (3.6) 

114.6 
(79.5) 

8.9 (7.2) 

95.8 
(63.1) 
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Table 3.7: The effect of running speed (2.0m/s or 3.0m/s) on the dependent variables. Values represented 
as mean (standard deviation). 
* denotes significance (p<0.05) between running speed. 

Max Rearfoot Angle (deg) * 

Rate of Rearfoot Angle (deg/sec) * 

Max Internal Tibial Rotation Angle (deg) * 

Rate of Internal Tibial Rotation (deg/sec) * 

2.0m/s 

9.2 (3.7) 

99.2 (61.5) 

9.1 (7.5) 

85.7 (60.3) 

3.0m/s 

10.2(3.9) 

136.2(84.8) 

10.3(7.8) 

113.5(79.6) 
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Table 3.8: The effect of foot (left or right) on the dependent variables. Values represented as mean 
(standard deviation). 
* denotes significance (p<0.05) between foot. 

Max Rearfoot Angle (deg) 

Rate of Rearfoot Angle (deg/sec) * 

Max Internal Tibial Rotation Angle (deg) * 

Rate of Internal Tibial Rotation (deg/sec) 

Left Foot 
9.4(3.1) 

128.7(79.7) 

12.1 (8.2) 

101.4(64.4) 

Right Foot 
9.9 (4.4) 

106.7(71.3) 

7.2 (6.2) 

97.8 (79.0) 
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3.5 Discussion 

The objective of this research study was twofold: 1) to determine if individuals 

with FFF experienced an increase in lower extremity motion during running when 

compared to individuals with a subtalar neutral foot type and 2) to determine the effects 

of medial arch supports on lower extremity motion during running among individuals 

with FFF. We hypothesized that: 1) individuals with FFF will demonstrate an increase in 

lower extremity motion during barefoot treadmill running when compared to individuals 

with a subtalar neutral foot type and 2) orthotic intervention will significantly affect 

lower extremity motion during treadmill running such that barefoot > 33% > 66% > 

100% among individuals with FFF. 

The results of this study demonstrate no significant differences with respect to 

maximum rearfoot angle, rate of rearfoot angle and rate of internal tibial rotation between 

individuals with subtalar neutral and FFF foot types. Surprisingly, maximum internal 

tibial rotation angle was significantly higher among the subtalar neutral group when 

compared to the FFF group. Thus, the results do not support the first hypothesis. The 

results of this study support the second hypothesis as orthotic intervention did have a 

significant effect on maximum rearfoot angle and maximum internal tibial rotation angle. 

However, the rate of rearfoot angle and the rate of internal tibial rotation were not 

significantly affected by orthotic intervention. 

This section begins with a discussion of the observed running mechanics between 

individuals with subtalar neutral and FFF, followed by the orthotic intervention on 

rearfoot motion and internal tibial rotation. Then, the clinical applications and study 
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limitations are presented followed by recommendations for future research and overall 

conclusions. 

3.5.1 Lower extremity kinematics during running among individuals 

with subtalar neutral and FFF foot types 

No significant differences were observed between the subtalar neutral and FFF 

groups with respect to age, height or weight. As expected there was a significant 

difference between groups with respect to static rearfoot angle which was measured to be 

4.5 ± 1.1 deg and 11.9 ± 1.3deg for the subtalar neutral and FFF groups, respectively 

(p<0.0001). Therefore, this confirmed that there was a significant difference in static foot 

structure between the two groups. The increase in static rearfoot angle observed in 

individuals with FFF is thought to result in excessive motion of the lower extremity 

during dynamic activities including running. More specifically, excessive pronators have 

demonstrated an increase in peak rearfoot eversion and tibial internal rotation excursions 

when compared to normal pronators during running (McClay and Manal, 1997). 

However, this observation remains controversial within the literature. 

The results from the present study suggest that individuals with FFF do not 

demonstrate an increase in maximum rearfoot angle or rate of rearfoot angle during 

running when compared to individuals with a subtalar neutral foot type. Thus, our 

hypothesis was not supported. Similar results have been reported within the literature 

suggesting that common indicators of flat foot, such as marked static rearfoot angle, are 

not correlated with maximum rearfoot eversion during walking (Hunt, Fahey and Smith, 

2000). These authors concluded that among asymptomatic flat foot individuals, adequate 

adaptation is possible during walking via muscular compensation. The present study 
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provides evidence for adequate adaptation during running among individuals with 

asymptomatic FFF as these individuals did not experience excessive lower extremity 

motion when compared to individuals with subtalar neutral foot types. However, 

speculation into muscular compensation cannot be confirmed. Studies involving 

individuals with symptomatic flat foot have also demonstrated similar rearfoot motion 

during the stance phase of walking when compared to individuals with normal feet (Hunt 

and Smith, 2004). In addition, investigations involving the relationship between medial 

arch height and injury suggest that arch height does not influence maximal eversion 

moment or maximal internal leg rotation during the stance phase of running (Nigg, Cole 

and Nachbauer, 1993). Thus, a low arch height which is a typical characteristic of FFF 

may not result in excessive motion of the lower extremity during running. 

The results from the present study also indicate that maximum internal tibial 

rotation was not significantly greater among individuals with FFF when compared to 

individuals with a subtalar neutral foot type. No differences were observed between the 

two groups with respect to the rate of internal tibial rotation, however, maximum internal 

tibial rotation angle was significantly higher among the subtalar neutral group (13.5 ± 8.4 

deg/sec vs. 10.0 ± 7.5 deg/sec; p<0.0001). Previous research has demonstrated a restraint 

of motion among individuals with flat feet (Hunt and Smith, 2004). Therefore the running 

mechanics observed in individuals with FFF may have a protective effect on internal 

tibial rotation and ultimately knee injuries. This is of particular interest since the knee has 

been reported to be the most common site to develop a running related injury (Clement, 

Taunton, Smart and McNicol, 1981). These results are in contrast to other studies which 

have shown that excessive pronators demonstrate higher internal tibial rotation 
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excursions when compared to normal pronators (McClay and Manal, 1997). These 

authors reported internal tibial rotation values of 8.9 ± 2.5 deg and 11.1 ± 3.5 deg for the 

normal and excessive pronators, respectively. The conflicting results may be attributed to 

the differences in rearfoot angle inclusion criteria into the normal and FFF groups. These 

authors required rearfoot angles of 8-15 deg and >18 deg to be included in the normal and 

excessive pronator groups, respectively. The present study required rearfoot angles of 4-6 

deg and >10 deg to be included in the subtalar neutral and FFF groups, respectively. 

Although the differences between groups were similar, it is possible that within the 

present study a rearfoot angle of >10 deg was not high enough to evoke increases in 

internal tibial rotation angles. 

3.5.2 Orthotic intervention on rearfoot motion among individuals with 

FFF 

The kinematic marker placement and rearfoot motion calculations have been used 

in previous research to accurately measure rearfoot angle and velocity (Nike, 1989; 

Kernozek and Ricard, 1990; Perry and Lafortune, 1995; McClay and Manal, 1997; 

McClay and Manal, 1998; Hetsroni, Finestone, Milgrom, Ben-Sira, Nyska, Mann, 

Almosnino and Ayalon, 2008). The results of the present study indicate that orthotic 

intervention had a significant effect on maximum rearfoot angle such that BF > 33% > 

66% > 100%. Significance was reached across each orthotic level (p<0.05) with values of 

10.4 ± 4.0 deg, 10.1 ± 3.8 deg, 9.4 ± 3.7 deg and 8.8 ± 3.6 deg for the conditions of BF, 

33%, 66% and 100%, respectively. These findings demonstrate that an increase in 

support under the medial longitudinal arch results in a decrease in maximum rearfoot 

angle during running. Similar decreases in maximum rearfoot angle have been found in 
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previous research with the use of foot orthotics ranging from approximately 6 deg to 13.7 

deg (Rodgers and Leveau, 1982; Smith, Clarke, Hamill and Santopietro, 1986; 

Mundermann, Nigg, Humble and Stefanyshyn, 2003; Nester, van der Linden and 

Bowker, 2003; MacLean, McClay Davis and Hamill, 2006). Mundermann et al. 

(Mundermann, Nigg, Humble and Stefanyshyn, 2003) demonstrated a significant 

reduction in maximum rearfoot eversion (p<0.001) from 16 deg to 13.7 deg during 

overground running at 4.0m/s when a medially posted orthotic was inserted into a 

running sandal. These values are higher than those observed in the present study and may 

be explained by the faster running speed, greater rearfoot angle inclusion criteria (>13 

deg) and footwear within the running conditions associated with the study by 

Mundermann et al. (Mundermann, Nigg, Humble and Stefanyshyn, 2003). MacLean et al. 

(MacLean, McClay Davis and Hamill, 2006) demonstrated a similar significant reduction 

in maximum rearfoot eversion angle during overground running at 3.6m/s while using a 

custom foot orthotic within a shoe when compared to the shod condition alone (p=0.025) 

although of a lesser magnitude (approximately: shod, 7 deg; orthotic, 6 deg). The smaller 

magnitude of rearfoot angle may be explained primarily due to the fact that this study 

included healthy runners with a more optimal static lower extremity alignment when 

compared to the participants in the present study. 

It can be speculated that the observed structural changes, which were recorded 

during the static rearfoot measurements as a result of orthotic intervention, were 

consistent throughout dynamic activity. Therefore, orthotics did have a mechanical effect 

on both static and dynamic maximum rearfoot angles. Currently it is unknown whether 

this small but statistically significant decrease in maximum rearfoot angle during orthotic 
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intervention would have a significant clinical impact. Arguably, this small reduction in 

maximum rearfoot angle during a single stance phase may have major clinical 

implications over time due to the repetitive nature of running. 

Orthotic intervention did not have a significant effect on the rate of rearfoot angle 

(p=0.2198). The rates of rearfoot angle obtained for the BF, 33%, 66% and 100% 

conditions were 115.2 ± 69.6 deg/sec, 121.8 ± 76.7 deg/sec, 119.3 ± 79.1 deg/sec and 

114.6 ± 79.5 deg/sec, respectively. Therefore, it appears that orthotics did not have a 

mechanical effect on the rate of the rearfoot motion during the stance phase of running. 

Previous studies have also demonstrated no significant decreases in rearfoot velocity 

during running. Stacoff et al. (Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, 

Denoth and Stussi, 2000) completed overground running trials at 2.5-3.0m/s while 

wearing footwear with the heel counter removed. The differences between subjects were 

larger than between the orthotic conditions and thus the use of orthotics seem to be highly 

individualized in terms of rearfoot velocity. The authors reported values ranging from 85 

deg/sec to 171 deg/sec between subjects. Although the values from the present study fall 

within this range, the differences may be due to variations in participant's foot structures 

or running mechanics. In addition, footwear has been shown to increase foot pronation 

during running which may also explain the reported increase in rearfoot velocity when 

compared to the present study (Stacoff, Kaelin, Stuessi and Segesser, 1989). This finding 

may be of particular interest since the current research suggests that the rate of pronation 

may contribute to injury more so than the magnitude of pronation (Hreljac, Marshall and 

Hume, 2000). If this is the case, then orthotics may not provide symptomatic relief 

150 



www.manaraa.com

through a mechanical mechanism since they did not significantly affect the rate of 

rearfoot motion. 

Conversely, previous research has demonstrated that orthotic intervention does 

not significantly affect maximum rearfoot angle (Nawoczenski, Cook and Saltzman, 

1995; Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; 

Stackhouse, McClay Davis and Hamill, 2004) and does significantly decrease rearfoot 

velocity (Mundermann, Nigg, Humble and Stefanyshyn, 2003; MacLean, McClay Davis 

and Hamill, 2006) which are in contrast to the present study. It is likely that the majority 

of these differences can be explained by the differences in orthotic construction between 

research studies. Lack of detail regarding orthotic description within these studies makes 

it difficult to determine the exact orthotic characteristics that may or may not be 

responsible for lower extremity changes during running. 

3.5.3 Orthotic intervention on internal tibial rotation among 

individuals with FFF 

In order to decrease motion artifact, kinematic markers were placed over areas on 

the tibia that had little muscle or adipose tissue between the skin and the bone. These 

concepts for optimal marker placement on the shank have been supported by previous 

work (Nigg, Khan, Fisher and Stefanyshyn, 1998; Bellchamber and van den Bogert, 

2000). In addition, the method used to calculate internal tibial rotation has been used in 

previous research studies (Perry, 1993). The results of the present study suggest that 

orthotic intervention significantly decrease maximum internal tibial rotation angle during 

running among individuals with FFF (p=0.0019) as values of 10.0 ± 7.5 deg and 10.2 ± 

8.3 deg, 9.6 ± 7.6 deg and 8.9 ± 7.2 deg were associated with BF, 33%, 66% and 100%, 
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respectively. Significant differences were found between each orthotic condition 

excluding the BF vs. 33% condition. Thus, it appears that orthotics may have a 

mechanical effect on maximum internal tibial rotation angle. Similar decreases in 

maximum internal tibial rotation angles with orthotic intervention have been reported in 

the literature ranging from 3.2 deg to 6.0 deg (Nawoczenski, Cook and Saltzman, 1995; 

Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; 

Mundermann, Nigg, Humble and Stefanyshyn, 2003). More specifically, a significant 

reduction in maximum internal tibial rotation angle was observed from 6deg to 5.5deg 

(Mundermann, Nigg, Humble and Stefanyshyn, 2003) and from 4.8 deg to 3.2 deg 

(Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000) while 

wearing foot orthotics. These values, which are lower than those found in the present 

study, may be explained by their choice of reference frame. These studies measured 

internal tibial rotation relative to the foot. Since the foot and tibia move together during 

gait, internal tibial rotation relative to the foot may be less than if it was measured 

relative to a static structure. The present study measured internal tibial rotation relative to 

its static position which may explain the increased internal tibial rotation angles found in 

the present study. 

Orthotic intervention did not have a significant effect on the rate of internal tibial 

rotation (p=0.2222). The rates of internal tibial rotation obtained for the BF, 33%, 66% 

and 100% conditions were 101.7 ± 80.1 deg/sec, 102.9 ± 77.2 deg/sec, 98.2 ± 66.0 

deg/sec and 95.8 ± 63.1 deg/sec, respectively. Therefore, it appears that orthotics did not 

have a mechanical effect on the rate of internal tibial rotation during the stance phase of 

running. Limited research has examined the effects of orthotic intervention on the rate of 
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internal tibial rotation during running. As such no direct comparisons can be made 

however, when compared to previous literature the results from the present study seem to 

be of similar values. In a study involving overground running at 4.0m/s, a maximum 

tibial rotation velocity of approximately 185 deg/sec was demonstrated (Mundermann, 

Nigg, Humble and Stefanyshyn, 2003). This increase in velocity when compared to the 

present study may be attributed to the faster running speed or the fact that the reported 

velocity may include both internal and external rotations. 

In contrast to the results of the present study, previous research has demonstrated 

that orthotic intervention does not significantly affect maximum internal tibial rotation 

angle (Nigg, Khan, Fisher and Stefanyshyn, 1998) and does significantly decrease 

maximum internal tibial rotation velocities (Mundermann, Nigg, Humble and 

Stefanyshyn, 2003). The conflicting results seen within the literature may be due to the 

differences in orthotic construction between research studies. In addition, a lack of 

description regarding orthotic construction makes it difficult to replicate and compare 

research studies which may also contribute to the variability of the results within the 

literature. 

3.5.4 Clinical applications 

The results of the present study indicate that similar lower extremity kinematics 

exist between individuals with a subtalar neutral foot and FFF during running. In fact, 

maximum internal tibial rotation angle was significantly higher among the subtalar 

neutral group when compared to the FFF group. Therefore, clinicians must be careful 

when using static rearfoot observations to predict dynamic foot function as individuals 

with increased static rearfoot angles may not experience the expected increase in lower 
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extremity motion during locomotion. In addition, the results of this study provide 

evidence for the mechanical effect of orthotics as an increase in medial arch support 

elicited a reduction in rearfoot motion and internal rotation of the tibia. However, no 

significant decrease in the rates of rearfoot angle and internal tibial rotation was observed 

with orthotic intervention. Therefore, it is unclear if orthotics function solely through a 

mechanical mechanism in order to deliver symptomatic pain relief. Further research 

should investigate other possible mechanisms to explain the positive effects of orthotics. 

A better understanding of the exact function of orthotics will allow for further 

modifications by researchers and a more accurate prescription by clinicians in order to 

improve the quality of life among individuals suffering from abnormal foot mechanics. 

3.5.5 Limitations 

One possible limitation of this study is that it involved measurement of the 

running mechanics among individuals with asymptomatic FFF. Since the participants 

were asymptomatic they may be able to overcome mechanical dysfunction relating to 

their mal-alignment by means of muscular control. Therefore, even though the 

participants fit our FFF criteria they may not have shown any dynamic differences when 

compared to individuals with a more optimal alignment. In addition, it is possible that 

orthotic intervention may have disturbed the preferred pattern of movement among these 

individuals resulting in an increase in lower extremity motion. This reasoning may 

explain why the present study did not find that individuals with FFF exhibited excessive 

motion of the lower extremity. Further, it may also explain the lack of significance found 

with the rate of motion at both the rearfoot and tibia. 
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After dynamic observation it was confirmed that 4 individuals were forefoot 

strikers, whereas 15 individuals were heel strikers. This difference may limit the results 

of this study since different running mechanics have been associated with both forefoot 

and heel strikers (McClay and Manal, 1995). However, current research has demonstrated 

that orthotic intervention has a similar effect on both forefoot and heel strikers 

(Stackhouse, McClay Davis and Hamill, 2004). Therefore, it is unlikely that this 

difference had an effect on the results of the present study. 

The construction of the medial arch support used in this study may be a limitation. 

The maximum height of the arch support was 16mm therefore the 100% condition may 

not be reflective of the participant's maximum medial arch height if it was greater than 

16mm. Further, since the 33% and 66% conditions were constructed based on the 

measured medial arch height there may not have been much of a difference between the 

orthotic conditions of 66% and 100% among individuals with a medial arch height 

greater than 16mm. However, since significance was achieved between these conditions 

for both maximum rearfoot angle and maximum internal tibial rotation angle it is likely 

that these two conditions were significantly different. In addition, the arch support used 

in this study is not similar to a full foot orthotic and therefore cautious interpretation 

should be employed when attempting to generalize the results of this study to full foot 

orthotics. As well, participants may have found the medial arch supports more 

uncomfortable than a full foot orthotic since they did not demonstrate a smooth transition 

from the heel to the forefoot as is typically seen with a full orthotic. Instead, the arch 

support was directly under the medial arch and may have caused an abrupt impact during 

the stance phase of running. 
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This study attempted to gain a better understanding of the effects of medial arch 

support during running among individuals with FFF. As a result, footwear was not worn 

in order to limit confounding results. Due to this decision, this study is limited in its 

ability to generalize the results since it does not provide an indication of the effects of 

medial arch supports within a shoe. Therefore, future research should expand on the 

present study to incorporate the effects of medial arch support within footwear during 

running. 

3.5.6 Recommendations for future work 

This study was designed to measure the running mechanics associated with 

functional flatfoot (FFF) as well as the effects of orthotic intervention during running 

among this population. Suggestions for future research are listed below: 

1. Develop prospective research studies to: 

a. Measure the prevention capabilities of orthotics 

b. Measure the running mechanics associated with FFF and its relation to 

injury 

2. Recruit symptomatic clinical populations for testing 

3. Further research into the effectiveness of orthotics through other mechanisms 

such as: 

a. Sensory feedback from the plantar surface of the foot 

b. Musculature of the lower extremity 

4. Examine the long term effects of orthotics on lower extremity kinematics 
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5. Test the effectiveness of orthotics at running speeds greater than 3.0m/s since this 

study demonstrated an increase in lower extremity kinematics from 2.0m/s to 

3.0m/s. 

6. Incorporate a control group into the research design in order to allow for a cause-

and-effect interpretation 

3.5.7 Conclusions 

The controversy surrounding foot orthotic function may be partly attributed to 

previous methodological designs including footwear and foot type which may have 

confounded the results. This experiment attempted to control for these possible 

confounding variables by completing barefoot running trials while controlling for foot 

type. As a result, this study may provide a better understanding of the basic mechanical 

effects of foot orthotics. 

This experiment demonstrated similar lower extremity running mechanics 

between individuals with subtalar neutral and FFF foot types. Surprisingly, a significant 

increase in maximum internal tibial rotation angle was observed among the subtalar 

neutral group indicating that excessive pronation may have a protective effect on tibial 

rotation. Therefore, static rearfoot measurement may not be indicative of dynamic foot 

function of the lower extremity thus, clinicians and researchers should not rely solely on 

this measurement in order to predict dynamic foot dysfunction. In addition, the present 

study provided evidence for the effectiveness of orthotic intervention in decreasing 

maximum rearfoot and maximum internal tibial rotation angles. However, there was a 

lack of evidence to support the effectiveness of orthotic intervention on the rates of 

rearfoot angle or internal tibial rotation. This may be of particular importance since lower 
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extremity velocities have been more closely associated with injury than lower extremity 

angles (Hreljac, Marshall and Hume, 2000). From a mechanical perspective, orthotics 

may not affect injury prevention since they did not significantly affect the rates of 

rearfoot angle or internal tibial rotation. However, further prospective studies are required 

in order to confirm the prevention capabilities of orthotics. 
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3.7 Appendices 

Appendix 3.1: Ffr'F Criteria 

1. STATIC ALIGNMENT 

HIP 
ASIS 

PSIS 

Iliac Crest 

Skin fold on back 

Curvature in spine 

KNEE 

Genu varum 
- Knees apart? 

Genu valgum 
Ankles apart? 

Genu recurvatum 
- Hyperextension of 

knee in standing 

FOOT 

1) Heel - tib/cal angle 
in weight bearing 

4) Midfoot Collapse: 

Weight bearing 

- Non-weight bearing 

VISUAL 
INSPECTION 

Level? 

Level? 

Level? 

Asymmetry present? 

Excessive? 

Stand with knees and 
ankles together. To 

participate in the study 
both ankles and knees 

must touch. 

Stand with knees 
locked. 

Is there excessive 
extension at the knee? 

Rearfoot angle greater 
than 10° 

(Posterior view) 

- Medial longitudinal 
arch is reduced relative 
to non-weight bearing 

- Medial longitudinal 
arch is present 

PARTICIPANT'S 
ALIGNMENT 

Yes / No 

Yes / No 

Yes / No 

Yes/No 

Yes /No 

Knees Touch? 
Yes / No 

Ankles Touch? 
Yes / No 

Yes / No 

Angle: 

Yes / No 

Yes / No 
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3) Forefoot - weight bearing 

: . D Y N A M I C . \ I . K ; N M I ; \ T 

Heel Toe Running 

Symmetry between left and right 

Heel Strike 

Midstance 

Toe-off 

3. ORTHOTIC INTERVENTION 

'lViling Condi lion 

Barefoot 

33% Arch Height 

66% Arch Height 

100% Arch Height 

Perceived Comfort of Orthotic 

Most comfortable condition 
Least comfortable condition 

Abduction? 

VISUAL 
INSPECTION 

Running 

Lateral (supinated)? 
OR 

Medial (pronated)? 

Excessive pronation? 
OR 

Prolonged pronation? 

Re-supination? 
OR 

Continued pronation? 

Confirming structural 
changes due to orthotic 

intervention 
Calcaneal Eversion 

(degrees) 
R L 

Yes /No 

PARTICIPANTS 
ALIGNMENT 

Yes / No 

Yes/No 

Yes / No 

Yes / No 

Yes / No 

Yes / No 

Yes/No 

Yes/No 
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Appendix 3.2: Screening Questionnaire 

VOLUNTEER EXCLUSION CRITERIA Date: (MM/DD/YYYY): 

Name: 

Address: 

City, Province: , Postal Code 

Tel #: ( )- Best time to call: 

Age: yrs. Height: cm Weight: kg 

Gender: M F 

Do you have any conditions that limit the use of your legs? Yes / No 

If yes, how much does the condition interfere with your activities? 
little moderate a great 

or none deal 
€ € € 

Describe: 
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Do you have or have you ever had: Yes / No 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
h) 

paralysis 

epilepsy 

cerebral palsy 

multiple sclerosis 

Parkinson's disease 

stroke 

any other neurological disorder 

diabetes 

Have you ever had frostbite in the lower extremities? Yes / No 

How much do the conditions that you indicated with a 'yes' below interfere with your activities? 
Yes/No little moderate a great 

or none deal 
Do you have or have you ever had : 
a) problems with your heart or lungs € € € 
b) high blood pressure € € € 
d) blood circulation problems (generally) € € € 

(specifically lower extremities) € € € 
d) cancer € € € 
e) arthritis € € € 
f) rheumatism € € € 
g) back problems € € € 
h) a joint disorder € € € 
i) a muscle disorder € € € 
j) a bone disorder € € € 
k) spina bifida € € € 

How much do the conditions that you indicated with a 'yes' below interfere with your activities? 
Yes / No little moderate a great 

or none deal 

Do you have or have you ever had these foot problems: 
a) 
b) 
c) 
d) 
e) 
f) 

bunions (hallux valgus) 
hammer toes 
calluses 
ulcerations 
plantar fasciitis 
any other foot problems (diagnosed or not) 

_ _ € 
_ _ € 

€ 
€ 
€ 

€ 
€ 
€ 
€ 
€ 

€ 
€ 
€ 
€ 
€ 

Have you ever severely injured or had surgery on your (specify) 
a) ankle € € € 
b) knee € € € 
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c) hip 

Have you ever broken any bones? 

Which ones?: 

Have you had any recent (specify) 
a) illnesses 
b) injuries 
c) operations 

€ 
€ 
€ 

€ 

€ 

€ 
€ 

€ 

€ 

€ 
€ 
€ 

Do you have difficulties performing any daily activities? 

Which activities?: 

Are you currently taking any medications (prescription or over-the-counter), or other drugs? 

Medication Ailment Frequency of use 

Orthotic Use 

Do you have foot orthotics? YES/NO 

If answered YES: 
How often do you wear your othotics? 

How long do you wear your orthotics for at one time? 

less than 2-3 more than 
1day/wk days/wk 5days/wk 

less than 2-5hrs more than 
2hrs 5hrs 

What types of activities require orthotic use? Describe below. 
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Appendix 3.3: Medial Arch Support Construction 

1. A left and right foot casting was completed during Session 2 by a Certified 
Pedorthist for each participant. From this cast, a foot mold was created. 

2. A 29 mm ruler was laid flat on top of the foot mold such that it rested on the first 
metatarsal head on one end and the medial calcaneus on the other. 

3. Under the area of the ruler, the point at which the arch appeared highest was 
estimated. A small pen mark was placed at this point. 

Figure 3.20: Determining maximum medial arch height location. 

4. The mold was then positioned such that the sole of the foot was in contact with 
the table and the medial edge of the foot was in line with the edge of the table. 

5. An electronic caliper with digital display (Mastercraft) was positioned in line with 
the mark made previously on the foot mold indicating the maximum arch height. 
The distance from the table to this mark on the arch was measured and recorded. 
The electronic caliper was placed at the same distance from the edge of the table 
(1 cm) for each subject to ensure consistency. 

Figure 3.21: Measuring maximum medial arch height. 
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6. The maximum arch height was rounded down to the nearest whole millimeter. 
7. One-third and two-thirds of the maximum value were calculated using excel. 

These values were rounded to the nearest whole millimeter. 
8. The distance between the table and the maximum height of the arch cookie was 

measured using the caliper. The arch cookies were all 16 mm in height thus, if a 
participant's maximum arch height value exceeded 16 mm, the full arch cookie 
was used as the maximum value. The arch cookies for the 33% and 66% arch 
height conditions were still calculated from the maximum measured arch height. 

9. The distance on the calipers was set to the difference between the maximum 
height of the arch cookie (16 mm) and the desired arch cookie. For example, if 
you were trying to create an arch cookie with a height of 9 mm, the calipers 
would be set at 7 mm. 

10. The edge of the caliper was used to score a line across the arch cookie. This line 
was then drawn on in pen. 

Figure 3.22: Creating the appropriate arch height using the electronic digital caliper. 

11. The ends of the line were indicated on the top of the arch cookie. At the midpoint 
of these two markings, a compass was centered and a half-circle was drawn 
connecting the two initial markings made on the top of the arch cookie (as a 
continuation of the line etched on by the caliper). 

12. An electric sander was then used to sand the bottom of the arch cookie down to 
the level of the scored line. 
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CHAPTER 4: GRAND DISCUSSION 

4.11ntroduction 

The main purpose of this thesis was to investigate the effects of orthotic 

intervention during running among individuals with functional flatfoot (FFF). Since 

orthotics are typically prescribed to this clinical population for rehabilitative purposes it 

is critical to understand how orthotics affect these individuals. Substantial clinical and 

anecdotal evidence exists for the effectiveness of orthotics in providing symptomatic pain 

relief however the underlying mechanism by which orthotics function continues to 

remain controversial in the literature. This study was designed to investigate the 

mechanical effects of medial arch supports on lower extremity kinematics during running 

in order to gain a better understanding into the mechanism behind orthotic function. 

Chapter 3 outlines the justification and methodology behind this research project as well 

as the results and discussion. 

In order to use a treadmill during the main thesis project an initial study was 

conducted to determine the accuracy of treadmills in representing the lower extremity 

kinematics associated with overground running among individuals with a subtalar neutral 

foot. Chapter 2 describes the justification and methodology behind this research study as 

well as the results and discussion. In addition, the results from this study were compared 

to the results of the main thesis project to determine if individuals with FFF experienced 

different lower extremity kinematics during barefoot treadmill running when compared to 

individuals with a subtalar neutral foot type. The findings are outlined in Chapter 3. The 

following sections will summarize the major findings from the previous chapters. 
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4.2 Treadmills accurately represent overground running 

This research study examined the barefoot running mechanics associated with 

treadmill and overground running among individuals with a subtalar neutral foot type. It 

was hypothesized that treadmills accurately represent the lower extremity kinematics 

associated with overground running. 

The results, as presented in Chapter 2, demonstrate similar kinematic values 

between treadmill and overground running with respect to the rate of rearfoot angle, 

maximum internal tibial rotation angle and the rate of internal tibial rotation. A number 

of other studies have demonstrated similar lower extremity kinematics between treadmill 

and overground running (Ingen Schenau, 1980; Schache, Blanch, Rath, Wrigley, Starr 

and Bennell, 2001; Lavcanska, Taylor and Schache, 2005) and walking (Matsas, Taylor 

and McBurney, 2000). However, maximum rearfoot angle was significantly higher 

during treadmill running (9.7 ± 3.3 deg) when compared to overground running (8.8 ± 2.9 

deg), although this difference was less than 1 deg. Similar rearfoot angles ranging from 

8.2 to 11.2 deg during running have been recorded within the literature (McClay and 

Manal, 1997; McClay and Manal, 1998; Nigg, Khan, Fisher and Stefanyshyn, 1998; 

Stacoff, Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000). From 

this range it appears that rearfoot angles obtained during overground running are 

associated with the values at the lower end of the range (Stacoff, Reinschmidt, Nigg, van 

den Bogert, Lundberg, Denoth and Stussi, 2000). Thus, the previous literature suggests 

that treadmill running may produce increased rearfoot angles however these studies did 

not compare this variable between running surfaces. Therefore, these differences may be 

a result of differences within running speed or participant selection between studies. It is 
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currently unknown whether the small statistically significant increase in rearfoot angle 

observed during treadmill running in the present study would be of clinical significance. 

However, if clinical or experimental decisions are dependent on small changes in 

maximum rearfoot angle then cautious interpretation should be employed when using 

treadmills. Otherwise, the results from this study indicate that treadmills accurately 

represent the lower extremity kinematics associated with overground barefoot running at 

speeds of 2.0m/s and 3.0m/s. 

4.3 Individuals with subtalar neutral and FFF foot types 

experience similar lower extremity kinematics during running 

This experiment investigated the running mechanics associated with individuals 

with different foot types. More specifically, lower extremity kinematics were examined 

between individuals with subtalar neutral and FFF foot types while running on a 

treadmill. It was hypothesized that individuals with FFF would exhibit an increase in 

lower extremity motion during running when compared to individuals with a subtalar 

neutral foot type. 

The obtained results are described in Chapter 3 and indicate similar running 

mechanics between the two groups. In particular, the FFF group did not experience a 

significant increase in maximum rearfoot angle, rate of rearfoot angle, maximum internal 

tibial rotation angle or rate of internal tibial rotation. Thus, this study did not provide 

support for our hypothesis. Similar results have been demonstrated within the literature 

suggesting that no significant differences exist between flat and normal feet during 

walking (Hunt and Smith, 2004) or running (Nigg, Khan, Fisher and Stefanyshyn, 1998). 

It is interesting to note that the subtalar neutral group demonstrated an increase in 
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maximum internal tibial rotation angle during running when compared to the FFF group. 

It has been speculated that individuals with FFF may have more of a restraint of motion 

as opposed to excessive motion (Hunt and Smith, 2004) during locomotion. Therefore, 

the condition of FFF may have more of a protective effect on maximum internal tibial 

rotation angle during running which may result in a lower risk of developing a knee 

injury. It may be speculated that individuals with asymptomatic flatfoot may have greater 

strength of their quadriceps and hamstring muscle groups which may result in less tibial 

rotation when these muscles co-contract. This may be of particular interest to runners as 

the knee has been found to be the most common site by which to develop a running 

related injury (Clement, Taunton, Smart and McNicol, 1981). 

In addition, it has been suggested that common indicators of flat foot, such as 

static rearfoot angle, may not be associated with an increase in maximum rearfoot 

eversion during walking (Hunt, Fahey and Smith, 2000). Therefore, individuals with 

asymptomatic FFF may adequately adapt during dynamic movement in order to 

overcome their static foot dysfunction. This adaptation may be occurring through lower 

extremity muscular compensation. More specifically, the muscles involved with foot 

supination may be stronger among individuals with asymptomatic flatfoot in order to 

correct for the excessive foot pronation that is typically seen among this symptomatic 

population. This study provides evidence for adequate adaptation among individuals with 

asymptomatic FFF during running since no significant increase in lower extremity 

kinematic variables were demonstrated. Further studies involving individuals with 

symptomatic FFF may be required to better understand the running mechanics associated 

with individuals who may benefit from orthotic intervention. 
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4.4 Orthotic intervention decreases the magnitude ofrearfoot 

and internal tibial rotation angles during running 

The main objective of this thesis project was to determine the effects of orthotic 

intervention on the lower extremity kinematics during running among individuals with 

FFF. Chapter 3 further describes the four orthotic conditions that were tested during 

running as well as the results. Briefly, the orthotic conditions included barefoot (BF) and 

33%, 66% and 100% of the participant's maximum medial arch height. It was 

hypothesized that orthotic intervention would demonstrate a decrease in rearfoot and 

internal tibial rotation motions during running among individuals with FFF such that 

100% < 66% < 33% < BF. 

The results demonstrated a significant and systematic decrease in maximum 

rearfoot angle and maximum internal tibial rotation angle during running between each 

orthotic condition. More specifically, 100% < 66% < 33% < BF with significance 

reached between each orthotic condition excluding the BF vs. 33% condition during 

maximum internal tibial rotation angle only. Previous research has demonstrated similar 

decreases in rearfoot motion (Mundermann, Nigg, Humble and Stefanyshyn, 2003; 

Nester, van der Linden and Bowker, 2003; MacLean, McClay Davis and Hamill, 2006) 

and internal tibial rotation (Nawoczenski, Cook and Saltzman, 1995; Stacoff, 

Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000; Mundermann, 

Nigg, Humble and Stefanyshyn, 2003) with the use of foot orthotics. Of debate is 

whether these small but statistically significant decreases in lower extremity angles 

between orthotic conditions would have clinical implications. Certainly, if one was to 
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consider the repetitive nature of running, the demonstrated results may be of great clinical 

importance. 

In addition, the obtained results demonstrated no significant differences in the 

rates of rearfoot angle or internal tibial rotation with orthotic intervention. Similar results 

have been reported within the literature for maximum rearfoot velocity (Stacoff, 

Reinschmidt, Nigg, van den Bogert, Lundberg, Denoth and Stussi, 2000) however, 

limited research has investigated the effects of maximum internal tibial rotation velocity. 

These non-significant findings may be a result of the participant criteria as this study 

recruited individuals with asymptomatic FFF. Based on the fact that these individuals 

present with FFF however are asymptomatic, this indicates that they may be able to 

adequately overcome their increased static rearfoot angle, resulting in a more optimal 

dynamic movement. As such, orthotic intervention may not have had an effect on these 

individuals because they demonstrated optimal dynamic alignment even in the barefoot 

condition. In addition, it has been suggested that orthotics may cause a disruption to the 

preferred path of movement, resulting in an increase in variability or total motion of the 

lower extremity (Stefanyshyn and Hettinga, 2006). Among individuals with 

asymptomatic FFF, it appears that this may have been the case for the rates of rearfoot 

angle and internal tibial rotation. This may be of clinical importance in terms of injury 

prevention as it has been demonstrated that the rate of pronation may contribute to injury 

more so than the angle of pronation (Hreljac, Marshall and Hume, 2000). Thus, orthotics 

may not have a large impact on injury prevention. Future research on individuals with 

symptomatic FFF is required in order to understand the effectiveness of orthotic 

intervention among this clinical population. In addition, the effects of orthotic 

175 



www.manaraa.com

intervention on subtalar joint displacement should be examined since changing the axis of 

this joint may affect the transfer of foot pronation to internal tibial rotation. 

4.5 Conclusions 

The results of this thesis provide evidence for the effectiveness of orthotics in 

decreasing maximum lower extremity angles during running among individuals with 

FFF. However, orthotic intervention did not seem to have a significant effect on the lower 

extremity rates during running among this population which may have further 

implications on injury prevention. In addition, individuals with FFF did not demonstrate 

excessive motion of the lower extremity when compared to individuals with a subtalar 

neutral foot type. Conversely, maximum internal tibial rotation angle was significantly 

higher among the subtalar neutral group. This indicates that perhaps the condition of FFF 

may have some protective benefits in terms of injury however further research is needed 

in order to confirm this finding. In terms of running surface, treadmills were found to 

accurately represent the lower extremity kinematics associated with overground running. 

Although a significant increase in maximum rearfoot angle was observed with treadmill 

running, it is unclear whether this small difference would be of clinical significance. 

However, careful interpretation of treadmill results should be employed if clinical or 

experimental decisions are dependent on small changes in rearfoot motion. 
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